
Malaysian Journal of Computer Science, vol. 10 No. 2, December 1997, pp. 72-81

72

ISSUES IN REQUIREMENT ENGINEERING OF OBJECT-ORIENTED INFORMATION
SYSTEMS: A REVIEW

Sai Peck Lee
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur, Malaysia

Fax : 603-7579249
email: saipeck@fsktm.um.edu.my

ABSTRACT

Information Systems (ISs) engineering, which covers
requirements engineering and design engineering, has been
oriented to adopting object-oriented concepts in its
theoretical foundation as a basis for development tools to
achieve higher quality and productivity with lower cost. In
this paper, we present a review of the various problematic
issues specifically in requirements engineering of object-
oriented ISs engineering and we mention some existing
research attempts to deal with such issues. Some of these
problematic issues are related to the lack of expressiveness
of the conceptual model used in most analysis methods and
the rigidity of the Computer Aided Software Engineering
(CASE) tools supporting these methods. We also discuss
some important issues in design engineering which are
closely linked to those in requirements engineering, such as
the integration of analysis and design tools to provide a
uniform ISs development support environment.

Keywords: Conceptual modelling, Information systems
engineering, Object-oriented concepts,
Tools Integration

1.0 INTRODUCTION

Information Systems Engineering (ISs Engineering) was
first introduced by J. Hagelstein [1]. It is divided into two
phases: requirements engineering and design engineering .
Requirements engineering involves knowledge acquisition
of a domain description (description of a real world
system) and knowledge representation by abstracting or
conceptualising the relevant parts of the domain description
to result in a conceptual schema of the required IS. The
conceptual schema is the final product of conceptual
modelling [2] in the requirements engineering phase. It
contains conceptual representation of a real world system
in which the essential information of the IS is preserved,
while irrelevant details are phased out. Design engineering
aims at mapping the conceptual representation of the
conceptual schema to the design specification of the IS.
Hence, the conceptual schema of an IS forms the basis for
subsequent design and implementation of that IS.

Conceptual modelling of ISs refers to the process of ISs
development that involves analysing the problem domain

of a real world system and leads to the development of a
conceptual schema, and then the specification of the
desired IS. In an ideal case, the different phases of the ISs
development life cycle should be aided by tools supporting
different development methods [3, 4, 5, 6]. These tools
need to be able to cooperate with each other in order to
support the whole ISs development life cycle effectively.
In relation to this, it is important to deal with the issue of
tools integration [7] in ISs engineering.

The great advancement in object-oriented (OO)
programming, coupled with the influence of artificial
intelligence and databases [8, 9, 10], has given rise to the
adoption of OO concepts in ISs development
methodologies [5, 11]. The object concept provides a more
natural way for representing real world objects. This was
the main reason that led to the emergence of OO analysis
and design methods within the framework of object-
oriented ISs (OOISs) development life cycle [12]. As a
result, towards the end of 1990s, ISs engineering has been
oriented to adopting OO concepts in its theoretical
foundation as a basis for development tools to achieve
higher quality and productivity with lower cost.

In this paper, we present a review of the various
problematic issues in requirements engineering of OOISs
engineering and we mention some existing research
attempts to deal with these issues. Some of these issues are
related to the lack of expressiveness of the conceptual
model used in most analysis methods and the rigidity of the
CASE tools supporting these methods. We also discuss
some important issues in design engineering which are
closely linked to those in requirements engineering, such as
the integration of analysis and design tools to provide a
uniform ISs development support environment.

2.0 PROBLEMATIC ISSUES

The definition of a well-defined conceptual model for an
analysis method is still problematic though there is a
proliferation of analysis methods in recent years. It is
claimed that a well-defined conceptual model should be
easy to use and understand, besides possessing qualities
such as high-level concepts for modelling objects and
constraints, as well as the basic facility for checking the
completeness and correctness of the conceptual schema of

Issues In Requirement Engineering of Object-Oriented Information Systems: A Review

73

the IS. Existing analysis methods [3, 13, 14] only partially
solve certain issues related to conceptual modelling. They
lack the necessary formalisation to define a formal
specification language and abstraction mechanisms [13, 15]
for providing the necessary underlying modelling support
to lead to a more complete and precise specification of an
IS at different perspectives. It has been argued that by
having a conceptual model alone is not enough to
substantiate the semantic power of a method, on the other
hand, the model needs to be enhanced and enriched to
include supplementary functionality to allow an IS to be
modelled and viewed at different perspectives. Currently,
most of the existing conceptual models only have a
graphical language for modelling ISs. It is important to
have a formal specification language to increase the
semantic power of a conceptual model by providing an
alternative way for specifying ISs at the conceptual level.
The specification language allows different facets of an IS
to be specified at the appropriate levels of detail.

Conceptual modelling is not only a time consuming and
tedious process, it is also error prone. Some tools
supporting existing methods are hard-coded and thus they
are often too rigid for sustaining a change. The automation
of analysis methods through customisation by using a meta-
CASE tool attempts to alleviate these problems.
Having an efficient analysis tool is not enough to justify an
effective ISs development, unless this tool is able to
communicate with other development tools in the whole
ISs development life cycle. Though there is a significant
increase of development tools supporting various methods
at different phases of the development life cycle recently,
these tools are stand-alone in the sense that they do not
share data and are not agreed on a common standard. As
such, there is a need to integrate these tools together to
form a uniform basis for an ISs development environment.

3.0 OO ANALYSIS METHODS: REVIEW AND
PROBLEMATIC ISSUES

We begin by presenting some existing analysis methods
based on two previous approaches (i.e., the Cartesian
approach, and the systemic approach) [5] to ISs
development and discuss the emergence of OO analysis
methods based on the OO approach [3, 16].

3.1 Review of Analysis Methods

Within the context of software engineering, the term
method has been defined as an explicit prescription for
achieving a set of activities required by an approach to
software development. In [17], a method is defined as a
procedure or technique for performing some significant
portion of the software life cycle. In short, a method
consists of a well-defined and disciplined procedure
tailored to the development of certain type of development
product. It consists of a set of concepts and a set of
methodological steps for aiding in modelling process to

lead to a development product. Methods are often
supported by a variety of tools, such as diagrams in the
form of graphical notations, textual representations, etc.

The emergence of analysis methods in the 1970s aimed to
deal with the issues of requirements analysis through
conceptual modelling techniques. Basically, the existing
analysis methods can be categorised in terms of the
concepts employed from the different modelling
approaches: the Cartesian approach, the systemic approach
and the OO approach. Fig. 1 shows the modelling
approaches viewed at three perspectives: data-oriented
perspective, process-oriented perspective and behaviour-
oriented perspective.

Data

Process

Behaviour

Cartesian
Approach

State-oriented
Systemic
Approach

Event-driven
Systemic
Approach

Object-Oriented
Approach

Fig. 1 The three perspectives of modelling approaches

The data-oriented perspective focuses on complete and
thorough data analysis and its relationships; the process-
oriented perspective focuses on analysis of
functions/processes of real world systems; whereas the
behaviour-oriented perspective concentrates on the
dynamic nature of the data and events of the real world that
have impact on the data recorded in the IS.

The Cartesian approach covers the process-oriented and
behaviour-oriented perspectives, the event-driven systemic
approach covers the data-oriented and behaviour-oriented
perspectives, whereas the state-oriented systemic approach
covers the data-oriented and process-oriented perspectives.
None of these three approaches covers all the three
perspectives. The shaded portion in the figure illustrates the
OO approach as a breakthrough in integrating the three
perspectives in current conceptual modelling techniques.

3.1.1 Cartesian Methods

The Cartesian methods are derived from the integration of
the Cartesian paradigm with functional design approach.
The dominant feature in the analysis procedure of these
methods is that a problem domain is hierarchically
decomposed into functions (or processes). These functions
are further decomposed by successive refinement into

Lee

74

simple sub-functions. The decomposition continues to a
point where the functions are manageable. As a basis of
functional decomposition, the system is seen at a high level
in terms of what it is intended to do, and then at a detailed
design, how it will accomplish these process-oriented
goals.

These methods are based on data flows. The most familiar
tool supporting these methods is the Data Flow Diagram
(DFD). Two well-known examples of Cartesian analysis
methods are SA (Structured Analysis) [18, 19] and SADT
(Structured Analysis and Design Technique) [18]. Later
integration of these Cartesian analysis methods with OO
design environments was partly because they have been
widely used all over the world. The main motivation is to
provide an OO development method that would be familiar
to most analysts. However, the transformation from the
DFD to the OO environment is not direct and difficult to
accomplish. To alleviate this problem, some works provide
heuristics for partial transformation, but this requires the
analyst's intervention for decision making. Some variations
of DFDs can be found in the literature.

The main drawback of the Cartesian methods is its
inadequacy of data modelling features for representing data
at a global perspective. Other disadvantages are related to
the lack of theoretical work for providing a solid
foundation to the concepts and techniques of top-down
decomposition and the lack of methodological aids for ISs
development. Furthermore, using DFDs is difficult to
evaluate the consistency, completeness and quality of
solutions.

3.1.2 Systematic Methods

The systemic methods focus fully on data modelling. They
are based on the integration of the systemic paradigm with
conceptual approach. In contrast to the Cartesian methods,
the systemic approach is originated from systems theory.
The analysis methods based on this approach emphasise the
representation of relevant phenomena of a domain
discourse through a conceptual model. Instead of analysing
the real world in terms of functions as in the Cartesian
approach, the systemic approach analyses the real world in
terms of a set of entities or objects that have relationships
between them and the interactions with each other. These
entities or objects evolve with time. Its main aim is to
interpret and comprehend a complex real world system by
modelling its relevant phenomena.

The conceptual models of the systemic analysis methods
are influenced by semantic networks used in artificial
intelligence. They are originated from the data models such
as the Entity-Relationship model (E-R model) [20] and the
model of NIAM [21]. The E-R model uses three concepts:
entity, relationship and attribute, while NIAM proposes two
concepts: entity and binary relation. These models can be
classified as semantic models because they express the
semantic representation of knowledge. Even though the E-

R model is easy to use, it lacks the representation of
behavioural relationships of real world phenomena.

Due to the limitation of the above mentioned systemic
methods to data-oriented representation, several subsequent
works aimed at representing the dynamic aspects of real
world phenomena. This led to the emergence of some
analysis methods capable of integrating the structural and
behavioural aspects of the IS in the same conceptual
schema. Some of these early methods are REMORA [11]
and ACM/PCM [22]. These methods have a common way
in modelling real world objects: objects undergo state
changes as time goes by and they exist within their life
duration during which successive state changes take place.
These objects have structural and behavioural properties.
The structure of an object describes its internal and external
relationships. The behaviour of an object expresses when
and how objects undergo state changes. Time is an integral
part of behaviour-oriented conceptual models. In CIAM
method [23], the attributes of an entity type depending on
time are defined as functions of time. Time modelling
forms part of the definition of methods in ERAE [1],
TEMPORA [24] and OBLOG [25].

3.1.3 Emergence of OO Methods

The main concepts employed in OO paradigm are object,
class, inheritance and message communication between
objects [12, 15]. From these basic concepts, other
mechanisms were developed. Polymorphism is a concept
linked to inheritance and by which a name can denote
objects of many different classes that are related by some
common superclass. There is still no consensus with regard
to the useful concepts for conceptual modelling using the
OO approach. The existing OO conceptual models are not
rich enough for incorporating the static and dynamic
aspects of an IS in a single conceptual schema.

The emergence of OO methods [3, 14] is mainly due to the
need to integrate the three perspectives of Fig. 1 in the
conceptual schema of an IS so that all aspects of the real
world system can be fully captured. These methods are
partly based on the approaches used in the previous
sections. Existing OO analysis methods use the concepts of
semantic models. The notions such as client-server and use
link used in the OO design were also adapted to some OO
analysis methods. We shall describe some important
concepts used by most existing OO conceptual models
briefly in the following, with reference and comparison
made to the conceptual models using the Cartesian
approach or systemic approach.

Within this context, an OO analysis method corresponds to
a method tailored to support conceptual modelling in the
requirements engineering phase of ISs engineering by
following the OO approach. We propose that a well-
defined OO analysis method should at least consists of:
• a conceptual model containing a set of OO concepts

represented by a set of graphical notations for

Issues In Requirement Engineering of Object-Oriented Information Systems: A Review

75

representing the static and dynamic aspects of various
phenomena of real world systems;

• a set of methodological steps for organising conceptual
modelling process;

• a specification language for defining precise
characteristics of an IS that are too complex to be
represented graphically in the conceptual schema;

• Object and Class

All OO analysis methods have some kind of classification
mechanism that groups objects of the same characteristics
into classes. In certain methods, the concepts entity and
entity types are used instead of the concepts object and
class. One of the special features of the OO analysis
methods is that all dynamic specifications for representing
interactions of objects are encapsulated in classes. The
class concept represents real world phenomena charact-
erised by a collection of attributes and methods. The object
concept has a rich semantics to represent the static and
dynamic characteristics of real world phenomena. The
entity concept only provides a static view of the
phenomena.

• Attribute

In OO programming languages, the concept attribute takes
its value from a data type or a class. The attributes of a
class are uniquely defined. The attributes that take their
values from a class correspond to association links or
aggregation links. The data types or domains can either be
pre-defined types (i.e., integer, real, Boolean, date, string,
etc.), user-defined enumerated types, or pre-defined types
to which a set of rules or an interval limit is associated.
Complex attributes are defined in most of the models [8].

• Static links: Association link, Aggregation link, Use
link and Generalisation link

Static links are static relationships that have certain time
duration between objects. The following four main static
links are used in OO analysis methods:

Association link

Association link is inspired from the relationship concept of
the E-R model. It is related to the form of abstraction in
which a relationship between member objects is considered
as a higher level object. It is used in the conceptual models
such as OMT [13], OOSA [12], PTECH [26] and OOA
[16]. Though the E-R model is simple and widely used, it
has some drawback for mapping into OO specifications
such as the confusion in mapping the relationship types.
Certain relationship types on which dynamic characteristics
can be defined behave like classes, while other relationship
types behave like the attributes of class. It is not possible to
explicitly model behavioural aspects of real world using the
E-R model.

Aggregation link

The literature of aggregation link that appeared in semantic
models dated from [10]. It is related to the form of
abstraction in which a collection of objects are viewed as a
single higher level object. The aggregation link defines
part-of relationship between an aggregate object and one or
several component objects. It is a special case of the
association link. The semantics between two objects x and y
can be described in two ways: x <has a> y, or inversely, y
<is a part of> x, where x is the aggregate object and y is the
component object. For instance, a car is composed of a
body, an engine and several wheels. There are, however,
several variations of aggregation links.

In [10], aggregation is defined to be an abstraction by
which an association between objects is interpreted as a
high-level object. The same approach is used in the
ACM/PCM model [22], where an author is modelled as an
aggregate of person and paper in a conference management.
In the OMT model, Rumbaugh [13] advocates that two
objects having independent lives should not be related by
an aggregation link, instead it should be related by an
association link. For instance, a society is an aggregate of
its states, but not of its employees. The aggregation link is
said to be related to the dynamic aspects of objects, in such
a way that an operation of an aggregate object can be
applied automatically to its component objects. The
aggregation link is also employed in the OOA model [16],
the MADIS model [15] and in [3, 4].

Use link

The notion of use link is used in OO design methods. It was
introduced to aid in ADA software design. The use
relationship is inspired from software engineering
principles. It is increasingly gaining popularity in OO
analysis methods. A use link [3] establishes a path for
message sending from one object to another. Its semantics
is that a client object "uses" the services of a server or
supplier object. It is also called client-server link as in the
OOA model [16]. As a result of its support for message
sending, the use link establishes a strong dynamic link
between two objects besides being considered as a static
link. In [4], association links or aggregation links used in
the analysis stage are transformed to use links in the design
stage.

Generalisation link

The form of abstraction called generalisation captures the
commonalties among objects and ignores the differences
among them. The need to differentiate the inheritance
concept used in OO programming languages from the one
(generalisation/specialisation) used in OO conceptual
models have been noted by several authors. For instance,
inheritance by specialisation that is used for representing a
real semantic link, is differentiated from inheritance by
factorisation for reusing object characteristics. In the former

Lee

76

case, every instance of the specialised class belongs also to
the generalised class, whereas in the latter case, an instance
of the subclass does not belong to the superclass. It is
possible that the superclass does not have instances, in
which case, the superclass defines only methods and
attribute declarations used by the terminal subclasses in the
inheritance hierarchy. In this context, late binding
mechanism is adopted by certain OO programming
languages for accessing the attributes defined in the
generalised class by an object of a specialised class.

Other related concepts used are: cluster [10] for relating to
a set of specialised classes in which the instances are
disjoint; overriding, denoting that instead of executing the
method defined in the generalised class, the method defined
in the specialised class that has the same name as the
method in the generalised class will be executed; and
augmentation mechanism, by which the method of the
generalised class is executed in addition to the method of
the specialised class.

• Dynamic Links

Dynamic features have been incorporated into some
conceptual models such as REMORA [11], OBLOG [25]
and MODWAY [27]. Dynamic links are used for
characterising instantaneous relationships (interactions) that
can occur between several evolving, related objects. In the
functional approach, dynamic links can be represented by
using DFDs. Two main categories of the systemic approach
in which dynamic links can be modelled are procedural
approach and declarative approach. The procedural
approach uses the event concept of procedural type, while
the declarative approach uses the event concept of
declarative type. An event corresponds simply to something
that occurs in the real world.

In the procedural approach, an event [15, 26] is expressed
by an occurrence condition and a procedural part. The
occurrence condition may define on the real world
description external to the IS, on the states of the objects in
the IS, or on the description of time. Three types of events
are classified: external event, internal event, and temporal
event. When the occurrence condition is satisfied, the
procedural part is invoked to execute the actions on several
objects simultaneously. The event concept following the
declarative approach is used in the models such as OBLOG
[25], MODWAY [27] and ERAE [1]. In this approach, the
evolution of objects is caused by events. Each object has a
life cycle consisting of the set of events affecting its life.
This approach is closer to the perception of dynamics in the
real world. Synchronisation is also proposed by different
event sharing mechanisms such as in the OBLOG model
and the MODWAY model.

• Static and Dynamic Constraints

A conceptual model must be rich enough to be able to
define concepts for handling constraints on all possible

worlds. In the literature, it can be noted that the stable
properties and instantaneous aspects of ISs are constrained
by constraints so that the consistency and reliability of ISs
can be ensured. This makes the state of an IS to comply to
the constraints described in a conceptual model. Some
researchers equate constraints to rules that control the
contents of the information base. However, there is still no
accepted standard for modelling constraints, especially with
respect to dynamic constraints. This area still remains a
topic for on-going research.

Static constraints

Static constraints defined in a class are constraints that
must be verified on the objects of the class at any moment,
as a result, limiting the possible states of the objects. For
instance, the static constraint of the aggregation link
implicitly defined between a car and an engine, stipulates
that an engine is always associated to a car. Other
constraints that are not implied in the static links are
constraints on attribute values (e.g., the attribute age of the
class EMPLOYEE must have values greater than 17), or
constraints on cardinalities of static links (e.g., the number
of wheels of a car cannot be greater than 5). Some models
allowing such constraints are OBLOG and TROLL [28].

Dynamic constraints

Dynamic constraints are constraints that restrict the
evolution of objects with respect to time. The description of
dynamic constraints normally involves the description of
the temporal aspect. There are three commonly used
approaches that allow dynamic constraints to be specified:
the approach by state transition graphs, the approach by
modal logic and the approach by temporal logic. The
approach by state transition graphs is most widely used.

A state transition graph can be defined on a class. It
describes the possible life cycle of objects in the class, i.e.,
the order of event occurrences affecting the states of the
objects. The nodes of a state transition graph are object
states. An object can be in one of these states during its life
duration. The arcs of the graph correspond to the transitions
from one state to another. An object undergoes a state
change when it is affected by an event. The OMT model
[13] uses the notion operation to describe how an object
reacts in response to events, while OOSA [12] uses the
model of Moore, by which the actions are not associated to
transitions but to states.

In the temporal logic, two approaches are distinguished: the
classical approach and the modal approach. In the classical
approach, a time (interval) is assigned to every assertion. In
the modal approach, some temporal modal operators are
used to determine the time at which an assertion can be
evaluated. A combination of the two approaches is used in
some models. The OBLOG model and the TROLL model
[28] allow formulas of the first order temporal logic to be
established by defining temporal operators such as

Issues In Requirement Engineering of Object-Oriented Information Systems: A Review

77

sometimef() and alwaysf(), respectively signifying "at a
given time in the future" and "always in the future". The
OBLOG model uses a technique that describes the
dependencies between events using the modal logic
approach. Modal logic is used to express necessity. This
logic represents what is possible (or impossible) to be done,
and what is necessary to be done.

Comparatively, state transition graphs provide an abstract
global view of the object behaviour. It is relatively easy to
verify their completeness, but they must be associated to a
mechanism that allows the representation of dynamic links.
The advantage of the modal logic and temporal logic
approaches is that dynamic constraints can be specified in
the form relatively close to the natural language. However,
it is quite difficult to verify their completeness.

3.2 Review of Issues in Formal Specification
Languages

An analysis method short of a specification language would
be meaningless. In the requirements engineering phase, the
purpose of the specification language is to aid in the
conceptual specifications of an IS and to serve as a basis
for rapid prototyping. The specification language provides
the specification support of the method for building precise
specifications of ISs.

The increasing demand for precise and complete
specification of ISs and the lack of expressiveness of
existing graphical languages, result in the need to have a
specification language capable of providing the means for
expressing all kinds of semantics of an IS to enhance the
conceptual model. In [29], a specification language named
O*L, which consists of three integrated sublanguages: O*
Query Language, O* Procedural Language and O*
Definition Language, is defined. Each of these
sublanguages provides a specific aspect of the specification
support. These sublanguages when taken together, not only
allows a wide variety of systems to be precisely specified at
the conceptual level, but also helps in code generation.

Much research has been dedicated to the definition of
database language interfaces for defining database
specification and for formulating high-level declarative ad-
hoc queries in traditional database management systems,
such as data definition language and high-level data
manipulation language [9]. Numerous object language
interfaces can also be seen in the literature recently with the
increasing adoption of the OO paradigm. Among others,
the object definition and manipulation languages of the
standard ODMG (Object Database Management Group)
model [30] have gained increasing popularity, especially in
the area related to the development of object repositories.
Rather than providing only a high-level language such as
SQL for data manipulation, OO programming and database
technologies are the main sources of inspiration and
motivation for the definition of a standard language for
object database models by the ODMG. The standard

ODMG model consists of three components: Object
Definition Language (ODL) as the data definition language
for high-level definition of database objects, Object Query
Language (OQL) as a declarative (non-procedural)
language for querying and updating database objects, and
C++ Language Binding for writing portable C++ code that
manipulates persistent objects. Both SQL and O2SQL [31]
provide the basis for the definition of OQL.

The specification language of a conceptual model must also
be rich enough to describe constraints on all possible
worlds. It must take into account the requirements stated in
[32], i.e., it should be expressible in natural language; it
should be able to express all types of constraints; it should
be integrated with the rest of the conceptual model; and it
should be able to express all constraints by using a few
basic structures and it should be applicable for rapid
prototyping. This includes the capability for the
representation of time, for instance, for describing
admissible histories of a system by using temporal logic;
the capability for textual expression of typical patterns of
constraints and the capability for declarative specification
of the chronological order of event occurrences such as
those used in ERAE and CPL.

Indeed, there is a great tendency for the development of
specification languages to provide different integrated
sublanguages for dealing with the different aspects of the
specification environment - query aspect, procedural aspect
and declarative aspect. This is especially useful for
prototyping of ISs before the actual implementation.

4.0 ABSTRACTION: REVIEW OF
PROBLEMATIC ISSUES

The emergence of conceptual models have brought with it
the issue of providing abstraction at the conceptual level for
dealing with the enormous information represented in the
conceptual schemas of large-scale ISs. Abstraction has
been proven to be a powerful OO construct and as a way of
reducing complexity of software. Software productivity has
been demonstrated to be inversely proportional to software
complexity [33]. As such, abstraction is a way for
improving software productivity. The main aim of
abstraction is to allow real world phenomena to be
represented in a more significant nature by omitting
irrelevant details, and thus, leading to a better
comprehension. This is important as the concepts
formalised by most existing conceptual models do not
model real world phenomena as perceived by the end user.
An efficient abstraction mechanism allows an abstract
structure to be constructed at the appropriate level of
abstraction from the basic building blocks of an IS.

Due to the increasing demand of large and complex ISs, in
contrast to the lack of abstraction support of existing
conceptual models to cater for such needs, abstraction
mechanisms are formalised as enhancement facility for

Lee

78

conceptual modelling to increase the semantic power of
some conceptual models by allowing all facets of the
elements defined in a conceptual schema to be represented
at the appropriate levels of detail. Indeed, most existing
analysis methods either provide abstraction support for
only the static aspects of ISs, or do not provide a uniform
integration of both the static and dynamic aspects.

Within the area of programming-in-the-large, over the
years, the application of abstraction has evolved to the
present stage where it is widely applied in software
architectural level of a system, such as functional
decomposition [2, 19, 34] and object decomposition [3,
16]. At this level of software design and reuse, abstraction
focuses on essential properties of systems organisation. It
captures the basic characteristics of significant components
of the system and their interactions. Hence, a special term
called higher-level abstraction, has been employed by
Shaw [33] for describing this sort of abstraction.

Functional decomposition describes a large complex
system as a hierarchy of subsystem functions. Such
decomposition is supported by a wide range of SA
techniques [19, 34], among which DFD [34, 13] is the most
common technique used in the decomposition process. On
the other hand, object decomposition defines a system as a
hierarchy of objects. In [16], objects belonging to the same
domain are grouped into a subject area. In this way, it is
possible to define a collection of objects sharing some basic
properties and behaviour. Functionality of a system alone
is no longer an important criterion in such decomposition.

Concepts have been introduced and defined in the literature
to deal with abstraction, such as subsystem [35], cluster
[36, 37], schema [38], semantic context and abstract class
[39], to name just a few, where each concept represents an
abstract structure. These concepts have been defined in
order to handle the immense information of large systems.

Abstraction has also been extensively applied in view
management [40, 41]. Shilling [40] defines a view as a
simplifying abstraction of a complex structure. Czejdo’s
work [41] involves integration of views in the Object-
Relationship model of OSA. In spite of the numerous
approaches providing some sort of abstraction support,
there is not much research carried out to provide
abstraction support for capturing also the behavioural
aspects of objects, which are very much stressed by Wand
[35] in his formalisation of ISs concepts. This is important
as this kind of support provides abstraction of the
interactions between objects, thus, allowing the user to
perceive the IS at a different perspective.

5.0 CASE TOOLS: SURVEY, CUSTOMISA-TION
AND INTEGRATION

To facilitate the modelling process, the method supporting
conceptual modelling should be automated into a CASE

tool. In fact, this realisation has been recognised not only in
requirements engineering but also in design engineering
that has led to a dramatic increase of tools supporting
different aspects in ISs engineering since a decade ago.

5.1 Survey of CASE Tools

CASE tools emerged in the early 80s support only a limited
number of tasks within a specific development phase.
They mainly provide support for drawing models and code
generation. For instance, the workbenches like Excelerator
and Software Through Pictures provide modelling support
for the E-R model and DFDs; while the code generators
like Install/1 and Spectrum concentrate on generating
application code [42]. The disadvantages of these CASE
tools are two fold:

• they are rigid and inflexible - information engineers
have to adapt their way of working to such tools.

• they are stand-alone and support only specific tasks.

The recent advancement in the field of CASE together with
wide availability of meta-CASE tools in the computer
market have not only helped the automation of analysis
methods to become a reality, but also the facilitation and
acceleration of the automation process [3, 16, 43]. The
process of customising or building a CASE tool for a
specific development method using a meta-CASE tool
(CASE shell) is often called meta-modelling or
methodology engineering [44]. The CASE shell architecture
uses a meta-model as basis for supporting meta-modelling
for the customisation of CASE tools. It aims at tailoring a
CASE tool supporting a development method to a specific
user-defined approach.

The emergence of meta-CASE tools has led to a
proliferation at OO analysis and design tools [13, 15, 16,
29] to cater for requirements modelling in the early 1990s.
Perhaps, this can be considered a great step forward in
software development at the early phases of OOISs
development life cycle. However, more often than not, the
development tools supporting the various methods are
stand-alone in the sense that they do not share data and are
not agreed on a common standard. As such, this gives rise
to the issues of tool integration with the aim of bridging the
gap between tools supporting different phases of the
development life cycle. As a result, the emergence of
CASE tools at the beginning of 1990s also emphasised the
integration of tools. In this respect, a CASE repository plays
an important role for storing specifications from different
CASE components and for sharing specifications among the
integrated CASE components.

CASE shells are flexible and are tailored to customisation
of CASE tools. They provide method independent support
by integrating in their architecture a meta-model, and in
certain cases, a meta-method for meta-modelling that can
lead to the development of a CASE tool according to a
specific user-defined approach. Method knowledge is

Issues In Requirement Engineering of Object-Oriented Information Systems: A Review

79

specified in the meta-CASE environment to be interpreted
later. CASE shell architecture enables modification and
extension of a tool's behaviour. Some commercial CASE
shells are such as GraphTalk [45], Ramatic [44] and
Finnish MetaEdit [46]. AWB [6, 43] and some existing
methods defined in [6, 43] that are customised using a
meta-CASE tool to provide modelling support for OO
models.

5.2 Tools Integration

The need to alleviate the lack of coexistence of CASE tools
gives rise to the emergence of another range of CASE tools
tailored to the integration of tools in the late 1980s. This
category of CASE tools often come with a built-in CASE
repository to enable specifications from different integrated
CASE components to be stored and shared.

Three main integration architecture stated in [7] are CASE
framework, Integrated CASE tools (ICASE), and Integrated
Project Support Environment (IPSE). The CASE
framework is an open architecture for integrating tools
supporting different development phases from multiple
sources to form a cohesive and uniform tool set that covers
the whole development life cycle via a uniform tool
interface. The well-established norms such as PCTE
(Portable Common Tools Environment) [47] developed in
the context of ESPRIT program, IBM's AD/cycle [48] and
ISO/IRDS all employ such an architecture. ICASE aims at
supporting a well-defined approach throughout the whole
development process via an integrated meta-model.
Oracle*CASE developed by Oracle Corp. (UK) and
Foundation developed by Andersen Consulting [42, 44]
have these features. IPSE is a framework that shares several
characteristics with the CASE framework and ICASE, with
additional features such as administrative support functions
like configuration management, multi-user support and
multi-user access control.

Kronlöf [49] uses a different technique for tool integration,
whose contention is that method integration is a prerequisite
for successful tool integration. According to his strategy, a
new method will be constructed for a given purpose from
two or more existing methods. The aim of method
integration is to combine the strengths and reduce the
weaknesses of the selected methods when applied to the
engineering process in question. By using the Computer
Aided Method Engineering (CAME) tool, method
engineering is supported with respect to the storage,
retrieval and assembly of method fragments. The fragments
of several ISs development methods stored in the so-called
method base can be selected by some facilities of the tool.

To bridge the gap between the development tools
supporting different phases of the development life cycle,
for instance, AWB [6, 43] was integrated in the Emeraude
PCTE [47] to cooperate with a design workbench tool and a
scaleable browser tool. The objective is to develop an ISs
development support environment that covers the whole

development life cycle. In this case, the open architecture
and conducive environment of the Emeraude PCTE
facilitates the development of a CASE repository for
integrating AWB with the design workbench tool and the
scaleable browser tool.

6.0 SUGGESTIONS AND CONCLUSIONS

A review of the various problematic issues in requirements
engineering of OOISs engineering has been presented.
There is a need to define a well-defined conceptual model
to overcome the lack of expressiveness of the conceptual
model used in most existing analysis methods. It is
recommended to develop a CASE tool supporting a certain
development method via customisation using an efficient
meta-CASE tool so as to sustain any changes that might be
made to the tool. This is to overcome the tedious process of
programming it in a hard-coded manner and also to
eliminate any unnecessary errors that could be introduced.
We also discuss some important issues in design
engineering which are closely linked to those in
requirements engineering, such as the integration of
analysis and design tools so as to provide a uniform ISs
development support environment.

The motivation of this paper is to propose a sound and
stable foundation for the development of OOISs in the
requirements engineering phase. The OO concepts are
adopted due to their closeness to represent real world
phenomena. We propose that the formalisation of
conceptual modelling with object-orientation should
encompass:
• an OO analysis method, covering a well-defined

conceptual model with OO concepts and including
concepts such as assertion and exception at the
conceptual level for expressing constraints involving
pending actions that cannot be controlled on all
possible worlds;

• customisation of the CASE tool supporting the
analysis method;

• abstraction mechanisms as an enhancement facility,
providing the means for abstracting inter-related
objects of an IS at different perspectives;

• a specification language, whose usefulness ranges
from high-level specification to procedural
specification of ISs at the conceptual level;

Fundamental concepts for modelling complex objects,
system behaviour and temporal aspects should be provided
by the conceptual model so that all kinds of phenomena of
a real world system can be represented in the conceptual
schema of the desired IS. The analysis method should be
theoretically sound in order to establish a sound and stable
foundation for conceptual modelling. The CASE tool
supporting the method should be integrated with other
development tools to form a unified whole for supporting
the whole ISs development life cycle in a uniform way.

Lee

80

In order to take into account the complexity issue of
complex real world systems and to facilitate the
maintenance of ISs, the formalisation rules of the
abstraction mechanisms should provide abstraction support
for both the static and dynamic aspects of an IS for
abstracting the relevant parts and inter-related objects of
the IS at different levels of detail.

Owing to the need for precise specification of ISs,
integrated sublanguages of the specification language
should be formalised. Each sublanguage should provide an
aspect of the specification support. These sublanguages
should provide facilities ranging from high-level
specification and enquiry, to procedural specification of ISs
at the conceptual level, so that all kinds of semantics of the
conceptual schema can be completely expressed.

As for further improvement, a reuse model should be
incorporated into the OO methodology to serve as a basis
for reusable components so that the development of ISs
will be reuse-oriented. With a reuse model, it is also
possible to incorporate different conceptual models on top
of a single repository of reusable components.

REFERENCES

[1] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert and
A. Rifaut, “A Knowledge Representation Language
for Requirements Engineering” in Proceedings of
the IEEE, Vol. 74, No. 10, 1986, pp. 1431-1444.

[2] G. Maksay and Y. Pigneur, “Reconciliating
Functional Decomposition, Conceptual Modelling,
Modular Design and Object Orientation for
Application Development” in Conference on Object
Oriented Approach in Information Systems, Quebec,
1991.

[3] G. Booch, Object-Oriented Design with Application .
Benjamin/Cummings, 1991.

[4] B. Henderson-Sellers and J. M. Edwards, “Analysis
and Design” in Methodologies and Notation,
Tutorial TOOLS , Paris, 1991.

[5] T. W. Olle, J. Hagelstein, I. G. Macdonald, C.
Rolland, H. G. Sol, F. J. M. V. Assche and A. A.
Verrijn-Stuart, Information Systems Methodologies.
Addison-Wesley, 1991.

[6] S. P. Lee and C. Rolland, “Integration of the Tool
(AWB) Supporting the O* Method in the PCTE-
Based Software Engineering Environment” in
Object Technologies for Advanced Software in the
Proceedings of the First JSSST Int. Symposium,
Springer-Verlag, Kanazawa, Japan, Nov. 4-6, 1993.

[7] J. A. Gulla, O. I. Lindland and G. Willumsen, “PPP:
A Integrated CASE Environment” in CAISE'91,
1991, pp. 194-221.

[8] C. Cauvet, C. Rolland and C. Proix, “Design
Methodology for Object-Oriented Database” in
International Conference on Management of Data,
Hyderabad, 1989.

[9] W. Kim, “Object-Oriented Databases: Definition
and Research Directions” in IEEE Transactions on
Knowledge and Data Engineering, Vol. 2, No. 3,
Sept. 1990.

[10] J. M. Smith and D. C. P. Smith, “Database
Abstractions: Aggregation and Generalization” in
ACM Transactions on Database Systems, Vol. 2,
No. 2, 1977.

[11] C. Rolland and C. Richard, “The Remora
Methodology for Information Systems Design and
Management” in IFIP Conference on Comparative
Review of Information Systems Design
Methodologies, North-Holland, 1982.

[12] S. Shlaer and S. J. Mellor, Object Oriented Systems
Analysis. Yourdon Press, 1988.

[13] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, Object-Oriented Modeling and
Design. Prentice Hall, 1991.

[14] J. Brunet, “Modeling the World with Semantics
Objects” in Conference on Object Oriented
Approach in Information Systems, Quebec, 1991.

[15] L. J. B. Essink, “Object Modelling and System
Dynamics in the Conceptualization Stages of
Information Systems Development” in Conference
on Object Oriented Approach in Information
Systems, Quebec, 1991.

[16] P. Coad and E. Yourdon, Object-Oriented Analysis.
Prentice-Hall, Englewood Cliffs, N. J., 1990.

[17] K. Orr, C. Gane, E. Yourdon, P. P. Chen and L. L.
Constantine, “Methodology: The Experts Speak” in
BYTE, April 1989.

[18] D. T. Ross and K. G. Schoman, “Structured
Analysis for Requirement Definition” in IEEE
Transactions on Software Engineering , Vol. 3, No.
1, Jan. 1977.

[19] T. DeMarco, Structured Analysis and System
Specification. Yourdon Press, New York, 1978.

[20] P. P. Chen, “The Entity-Relationship Model:
Towards a Unified View of Data” in ACM
Transactions on Database Systems, Vol. 1, No. 1,
March, 1976.

Issues In Requirement Engineering of Object-Oriented Information Systems: A Review

81

[21] G. M. A. Verheijen and J. Van Bekkum, “NIAM: an
Information Analysis Method” in IFIP TC8
International Conference on Comparative Review of
Information Systems Design Methodologies, North-
Holland, 1982.

[22] M. L. Brodie and E. Silva, “Active and Passive
Component Modelling: ACM/PCM” in IFIP TC8
International Conference on Comparative Review of
Information Systems Design Methodologies, North-
Holland, 1982.

[23] M. R. Gustafsson, T. Karlsson and J. A. Bubenko,
“A Declarative Approach to Conceptual Information
Systems Modeling” in IFIP TC8 International
Conference on Comparative Review of Information
Systems Design Methodologies, North-Holland,
1982.

[24] TEMPORA, “ESPRIT II Project” in Concepts
Manual , 1989.

[25] A. Sernadas, J. Fiedero, C. Sernadas and H. D.
Ehrich, The Basic Building Block of Information
Systems, Information Systems Concepts: An In-
depth Analysis. Edited by E. Falkenberg, P.
Lindgreen, North Holland, 1989.

[26] M. Fowler, “The Use of Object-Oriented Analysis in
Medical Informatics for Large Integrated Systems”
in TOOLS , Prentice Hall, Paris, 1991.

[27] C. Cauvet and F. Semmak “Abstraction Forms in
Object-Oriented Conceptual Modelling:
Localization, Aggregation and Generalization
Extensions” in Advanced Information Systems
Engineering, CAISE, Utrecht, Netherlands, June
1994.

[28] R. Jungclaus, G. Saake, T. Hartmann and C.
Sernadas, “Object-Oriented Specification of
Information Systems: The TROLL Language” in
Technische Universität Braunschweig, Dec. 1991.

[29] S. P. Lee, Formalization and Automatic Support for
Conceptual Modeling. University of Paris 1
Panthéon-Sorbonne, 1994.

[30] Object Database Management Group, Object
Databases - The ODMG-93 Standard (Version 0.5).
Edited by R. Cattell, SunSoft, 1993.

[31] F. Bancilhon, S. Cluet and C. Delobel, “A Query
Language for an Object-Oriented Database System”
in Proceedings of the Second Workshop on
Database Programming Languages, Salishan,
Oregon, USA, June 1989.

[32] F. Dignum, T. Kemme, W. Kreuzen, H. Weigand
and R. P. van de Riet, “Constraint Modelling using a

Conceptual Prototyping Language” in DKE 2, 1987,
pp. 213-254.

[33] M. Shaw, “Toward Higher-Level Abstractions for
Software Systems” in Data & Knowledge
Engineering, Dec. 1989.

[34] E. Yourdon, Modern Structured Analysis. Yourdon
Press/Prentice-Hall, New York, 1989.

[35] Y. Wand and R. Weber, “An Ontological Analysis
of Some Fundamental Information Systems
Concepts” in Proceedings of the Ninth International
Conference on Information Systems, Minneapolis,
Minnesota, Nov. 30 - Dec. 3, 1988.

[36] W. Kozaczynski and L. Lilien, “An Extended

Entity-Relationship (E2R) Database Specification
into the Logical Relational Design” in Proceedings
of the Sixth International Conference on Entity-
Relationship Approach , New York, Nov. 9 - 11,
1987.

[37] T. J. Teorey, G. Wei, D. L. Bolton and J. A. Koenig,
“ER Model Clustering as An Aid for User
Communication and Documentation in Database
Design” in Communications of the ACM, Vol. 32,
No. 8, Aug. 1989.

[38] P. Desfray, “Object Oriented Structuring: An
Alternative to Hierarchical Models” in Technology
of Object-Oriented Languages and Systems, USA,
1991.

[39] S. P. Lee, J. Brunet and C. Rolland, “Abstraction in
an Object-Oriented Method” in Malaysian Journal
of Computer Science, Vol. 10, No. 1, June 1997.

[40] J. J. Shilling and P. F. Sweeney, “Three Steps to
Views: Extending the Object-Oriented Paradigm” in
OOPSLA ‘89 Proceedings, Oct. 1 - 6, 1989.

[41] B. Czejdo and D. W. Embley, “View Specification
and Manipulation for a Semantic Data Model” in
Information Systems, Vol. 16, No. 6, 1991, pp. 585-
612.

[42] C. McClure, “The CASE Experience” in BYTE,
April 1989.

[43] J. Brunet, S. P. Lee and J-L. Barbe, “Analyst
Workbench Tutorial” in Esprit project 5311
(Business Class) , Feb. 1992.

[44] M. Heym and H. Osterle, "Computer-aided
methodology engineering" in Information and
Software Technology, Vol. 35, No. 6/7, June 1993.

[45] Rank Zerox, "GraphTalk - Meta-modeling (Version
2.4)" in Reference Manual, 1992.

Lee

82

[46] MetaCase Consulting, MetaEdit Personnal 1.2:
User Manual. Micro Works Finland, 1991.

[47] G. Boudier, F. Gallo, R. Minot and I. Thomas, “An
Overview of PCTE and PCTE+” in Proceedings of
3rd ACM Symposium on Software Environments,
Nov., 1988.

[48] V. J. Mercurio, B. F. Meyers, A. M. Nisbet and G.
Radin, “AD/Cycle Strategy and Architecture” in
IBM Systems Journal, Vol. 29, No. 2, 1990.

[49] K. Kronlöf, Method Integration: Concepts and Case
Studies. Wiley Professional Computing, 1993.

BIOGRAPHY

Lee Sai Peck obtained her Master of Computer Science
from University of Malaya in 1990, her D.E.A of Computer
Science from University of Paris VI Pierre et Marie Curie
in 1991 and her Ph.D of Computer Science from University
of Paris I Panthéon-Sorbonne in 1994. She is a lecturer at
Faculty of Computer Science and Information Technology,
University of Malaya.

