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ABSTRACT

The Four-point Explicit Decoupled Group(EDG) iterative
method was briefly introduced in solving a well known
coupled system of elliptic partial differential equations in
CFD (Computational Fluid Dynamics), in particular, the
steady Navier-Stokes equations.  This new method is
compared with the Alternating Group Explicit (AGE)
scheme.  The numerical experiments carried out confirm
the superiority of the former method over the latter in
terms of execution time.  The parallel implementation of
the new method intended for a shared memory parallel
computer is investigated and discussed.
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1.0 INTRODUCTION

Consider the following coupled system of partial
diffe rential equations:
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where x,y ∈Ω  = (0,L) x(0,L) with a set of conditions for
ψ  and ω prescribed at the boundary.  Here, c and Re (the
Reynolds number) are non-negative constants and
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  is the usual Laplacian operator.  Note

that if Re ≠  0, then the coupled system represents the two
dimensional steady state Navier-Stokes equations which
describe the basic viscous, incompressible flow problems.
ψ  and ω are known respectively as the stream and
vorticity functions.  Suppose we impose the boundary

conditions ψ  = 0 and 
∂ ψ

∂η

2

 
2

= 0, where η  is the normal to

the boundary ∂Ω of Ω , then our problem amounts to
solving  (1.1) and (1.2) successively with ψ  = 0 and ω =
0 respectively along ∂Ω.
The aim of this paper is to investigate the versatility of the
four-point EDG method, sequentially and in parallel, in

solving this fundamental problem in fluid dynamics.  A
brief discussion of the finite difference approximations
for (1.1)-(1.2) with the specified boundary conditions will
be given in Section 2.0.  In Section 3.0, the development
of  the EDG scheme for the vorticity equation (1.2) will
be presented.  The derivation of the algorithm for the
stream solutions will then readily follow.  Section 4.0
describes the numerical algorithm for solving the coupled
system (1.1)-(1.2) by incorporating the four-point EDG in
its iteration scheme, followed by the numerical
experiments and comparison with the AGE fractional
scheme in Section 5.0.  In Section 6.0, the parallel
algorithm for the EDG scheme for solving the same
problem is developed and investigated, and the
concluding remarks are presented in Section 7.0.

2.0 FINITE DIFFERENCE APPROXIMATIONS

Let us assume that a rectangular grid in the (x,y)-plane
with grid spacing h = L/n in both directions and
x =  ih,  y  =  jh ,  i, j =  0,1,.. .,ni j  is used.  Observe that if ω
is known, then (1.1) is a linear elliptic equation in ψ , and
if ψ  is known, then (1.2) is a linear elliptic equation in
ω.  Suppose ψ (0)  and ω(0)  are the initial guesses, we can

use the ω(0)  in (1.1) to produce  ψ (1) .  Again we can use
this ψ (1)  in (1.2) to produce ω(1) .  Then we can use this
ω( )1  in (1.1) to produce ψ(2) , and so on.  This indicates
that at the grid point (x yi j, )  the following alternating

sequences of outer iterates can be generated:

ψ ψ ψ ψ ψ ψij
(0)

ij
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ij
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ij
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ij
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Fig. 1:  Generation of outer iterates
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The finite difference approximations of equations (1.1)
and (1.2) using the centred difference formula at the point
(x yi j, )  will result in the following:
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here σ = Re/4 and i,j =1,2,...,n-1.  Another type of
approximation that can represent the differential equations
(1.1) and (1.2) is the cross orientation [6] which can be
obtained by rotating the i-plane axis and the j-plane axis
clockwise by 45o .  With this displacement, equations
(2.1) and (2.2) become (2.3) and (2.4) respectively:
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Clearly it can be seen that the application of (2.3)-(2.4)
will result in a large and sparse system with the
coefficient matrix being a block matrix depending on the
ordering of points taken.

3.0 THE FOUR POINT EDG FORMULATION

Assume that the solution at any group of four points on
the solution domain is achieved using the rotated equation
(2.4).  This will result in a (4x4) system of equations
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which leads to a decoupled system of (2x2) equations
whose explicit forms are given by
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The computational molecule of Eq. (3.1) and (3.2) are
given in Fig. 2 and Fig. 3 respectively:

                  

i,j

i-1,j-1 i+1,j-1

i+1,j+1

i+2,j

i-1,j+1

i,j+2 i+2,j+2

Fig. 2: Computational molecule of Eq. (3.1)

                  

i+1,j

i,j-1 i+2,j-1

i+2,j+1

i+1,j+2

i-1,j

i,j+1

i-1,j+2

Fig. 3: Computational molecule of Eq. (3.2)

Note that for both equations, iterative evaluation of points
from each group requires contribution of points only from
the same group.  This means the iteration of points for the
vorticity solutions from Eq. (3.1) can be carried out by
only involving points of type  only, while the iterations
arose from Eq. (3.2) can be implemented by involving
points of type  only.  Due to this independency, the
iterations can be carried out on either one of the two types
of points, which means we can expect the execution time
to be reduced by nearly half since iterations are done on
only about half of the total nodal points.
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In summary, the four-point EDG(SOR) scheme
corresponds to iterating the solutions at approximately
half of the points in the solution domain using either (3.1)
or (3.2) by implementing the relaxation procedure
ω ω γ ω ω

(k+1) (k) k+1) k)
  = + −( ~ )

( (  until convergence is

achieved, i.e., when  ω ω εij
k+1)

ij
(k)   ( − ≤  ; here γ  is the

optimum acceleration parameter and ε  is the
convergence criterion used.  If convergence is achieved,
then the solutions are evaluated at the rest of the nodal
points (points of opposite type)  using the centred
difference formula (2.2).  Otherwise, the iteration cycle is
repeated.

In the case of n even, the EDGR scheme is adopted, i.e.,
we assume the uncoupled points are on the rightmost and
topmost grid lines.  Suppose Eq. (3.1) is chosen to be
used in the iterative evaluation of points, these uncoupled
points must be calculated after the iterations on the points

 have converged.  The uncoupled points of the same
type are calculated using the rotated formula of Eq. (2.4).
Only after these points have been calculated, the
remaining points of the uncoupled group (of the opposite
type) are evaluated using the centred difference formula
(2.2).

       

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 4: Natural group ordering

In theory, if we apply Eq. (3.1) or (3.2) to each of the
groups in natural ordering as in Fig. 4, then we shall
obtain a system of equations
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whose coefficient matrix A is defined as
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The coefficient matrix A can be written as the sum of its
diagonal block element D, its strictly lower triangular
block element L, and its strictly upper triangular block
element U, i.e.,

A = D + L + U. (3.6)

Thus, the solution of (3.3) can be iteratively computed via
Gauss-Seidel scheme as

( D + L )u(m+1) = b - Uu(m). (3.7)

This scheme can be further improved by introducing the
over-relaxation parameter γ .
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4.0 NUMERICAL ALGORITHM

With boundary conditions specified as before, an
algorithm can now be formulated to solve the coupled
system (1.1) and (1.2):

Step 1 Choose h and construct the number of
nodal points as usual for an elliptic problem.  Set
ψ ω ψ ωij

(0)
ij
(0)

ij
(0)

ij
(0) =   =  0 =  outer_  =  outer_  as initial

approximations for the outer iteration.

Step 2 Generate sequences  ψ(k+1)  and  ω(k +1)

on Ω  by the alternating procedure described before for k
= 0,1,2,...

Generate ψij
(k+1)  of (2.3) using the four-

point EDG inner iterative procedure described in
Section 3.0 for a prescribed tolerance ε .  (Use the
same Eq. (2.4) but replace ω with ψ , c ij  with ωij ,

and  σ =  0).
Generate ωij

(k+1)  of (2.4) using the four-

point EDG inner iterative procedure for a
prescribed tolerance ε .  (Here, use the ψij

(k+1)  just

obtained previously in the place of ψ , and
σ =  Re / 4).

Store the converged values ψij
(k+1)  in

outer_ ij
(m)ψ , and ωij

(k+1)   in outer_ ij
(m)ω .

Step 3 Check the convergence of the outer
iteration process over the whole mesh points for a
prescribed convergence criterion δ , i.e., check whether
the following condition is achieved,

max{ }outer_   outer_  outer_ outer_   ij
(r +1)

ij
(r)

ij
(r+1)

ij
(r)ψ ψ ω ω δ− − ≤, .

If convergence is achieved, then the numerical solution of
the given problem is given by the generated outer_ ij

(m+1)ψ
and outer_ ij

(m+1)ω .  Otherwise, go back to Step 2 .

5.0 NUMERICAL EXPERIMENTATION

Numerical experiments have been carried out on the
Sequent Balance 8000 multiprocessor at Loughborough
University of Technology, United Kingdom, using the
algorithm described previously to solve the following
Navier-Stokes equations [9],

( )
∇ −

∇ − −

2

2
x y y x

 =                                                                 (5.1)

 +  Re   =                                (5.2)

ψ ω

ω ψω ψω 1

with the boundary conditions

ψ ψ ω ω
ψ ψ ω ω

(x,0) =  (x,1) =  (x,0) =  (x,1) =  0,      0 x 1,

(0,y) =  (1,y) =  (0,y) =  (1,y) =  0,      0 y 1.

≤ ≤
≤ ≤

(5.3)

The grid spacing used was h = 0.1 and the problem was
solved for various values of Reynolds number Re ≥  1.
For each case, the experimental optimum relaxation
parameter γ  was chosen to within ±0 01.  which gives the
most rapid convergence.  Throughout the experiment, a
tolerance of  δ = ε   =  10-11  was used as the termination
criteria for both the outer and inner iterations.

Table 1 lists the iteration counts and timings for the EDG
method for selected Re ranging from 1 to 6954.  The same
problem was also solved using the AGE fractional scheme
[9].  In Step 2 of the numerical algorithm presented in
Section 4.0, we replaced the EDG inner iterative process
with AGE inner iterative scheme.  The iteration counts
and timings obtained from this method are also displayed
in Table 1 for selected values of Re.  Here, r represents
the optimum acceleration parameter for the AGE scheme
which was chosen experimentally the same way as in the
EDG case.  The final computed values of ψ  and ω  using
the EDG and AGE methods for selected values of x and y
for Re = 1 and 1000 are shown in Tables 2-3 (a and b).
For comparison purposes, the numerical solutions
obtained by the conventional centred difference scheme is
also included.
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Table 1:  Iteration counts and timings of EDG and AGE for various Reynolds number

Iteration numbers for the Navier-Stokes problem  using the
four point EDG scheme

Iteration numbers for the Navier-Stokes problem using the
AGE fractional scheme

Re Time
(secs)

Value
of

γ

Number
of outer
iteration

m

Number
of inner
iteration

for  ψ

Number
of inner
iteration

for  ω

Re Time
(secs)

Value of
r

Number of
outer

iteration m

Number
of inner
iteration

for  ψ

Number
of inner
iteration

for  ω
1

10

100

1000

5000

6954

>6954

1.50

1.78

2.27

4.31

13.63

23.62

1.37

1.37

1.37

1.29

0.82

0.72

Diverge

1
2
3
4
1
2
3
4
5
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
21
9
1
1

21
10
4
1
1

21
13
8
2
1
1

35
14
16
9
6
3
1
1
1

104
53
53
18
30
21
11
3
1
1
1
1
1
1

128
65
65
35
37
27
15
4
1
1
1
1
1

23
14
4
1

23
16
8
1
1

23
19
13
7
2
1

40
25
21
17
14
10
6
2
1

121
74
66
52
47
38
29
17
14
10
7
4
1
1

149
144
150
136
119
101
83
63
40
11
6
6
3
2

1

10

100

1000

5000

7334

>7334

12.99

14.88

19.14

30.30

62.01

94.84

1.26

1.26

1.26

1.26

1.70

1.77

Diverge

1
2
3
4
1
2
3
4
5
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9

10
11
1
2
3
4
5
6
7
8
9

10
11
12

1
50
7
1
1

50
11
2
1
1

50
19
13
2
1
1

50
27
25
16
6
2
1
1
1

76
45
41
33
24
14
6
1
1
1
1

79
48
43
35
26
17
8
2
1
1
1

58
20
3
1

58
28
9
1
1

58
34
20
6
2
1

58
41
41
28
15
9
4
2
1

88
79
70
46
50
41
29
16
7
3
1

92
150
129
106
90
72
52
37
16
4
2
1



Ali and Abdullah

56

Table 2a: Numerical solutions obtained for ψ  when x = 0.2 and 0.7 (Re = 1)

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x = 0.2
Centred

Difference
.0008093 .0015056 .0020305 .0023544 .0024636 .0023544 .0020305 .0015056 .0008093

AGE .0008093 .0015056 .0020305 .0023544 .0024636 .0023544 .0020305 .0015056 .0008093
EDG .0008539 .0015889 .0021345 .0024753 .0025862 .0024754 .0021345 .0015889 .0008539

x = 0.7
Centred

Difference
.0010885 .0020305 .0027439 .0031854 .0033345 .0031854 .0027439 .0020305 .0010885

AGE .0010885 .0020305 .0027439 .0031854 .0033345 .0031854 .0027439 .0020305 .0010885
EDG .0011466 .0021345 .0028863 .0033444 .0035043 .0033444 .0028863 .0021345 .0011466

Table 2b: Numerical solutions obtained for ω when x = 0.2 and 0.7 (Re = 1)

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x = 0.2
Centred

Difference
.0206265 .0342946 .0429625 .0477719 .0493143 .0477726 .0429633 .0342946 .0206258

AGE .0206265 .0342946 .0429625 .0477719 .0493143 .0477726 .0429633 .0342946 .0206258
EDG .0213641 .0354767 .0440904 .0489574 .0504545 .0489583 .0440914 .0354767 .0213632

x = 0.7
Centred

Difference
.0253966 .0429625 .0543877 .0608126 .0628844 .0608123 .0543877 .0429633 .0253977

AGE .0253966 .0429625 .0543877 .0608126 .0628844 .0608123 .0543877 .0429633 .0253977
EDG .0261079 .0440904 .0558204 .0622729 .0644235 .0622726 .0558204 .0440914 .0261094

Table 3a: Numerical solutions obtained for ψ  when x = 0.2 and 0.7 (Re = 1000)

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x = 0.2
Centred

Difference
.0008098 .0015043 .0020279 .0023530 .0024647 .0023566 .0020316 .0015043 .0008070

AGE .0008098 .0015043 .0020279 .0023530 .0024647 .0023566 .0020316 .0015043 .0008070
EDG .0008546 .0015865 .0021302 .0024726 .0025872 .0024787 .0021359 .0015865 .0008503

x = 0.7
Centred

Difference
.0010857 .0020279 .0027434 .0031863 .0033351 .0031849 .0027434 .0020316 .0010907

AGE .0010857 .0020279 .0027434 .0031863 .0033351 .0031849 .0027434 .0020316 .0010907
EDG .0011414 .0021302 .0028853 .0033458 .0035053 .0033436 .0028853 .0021359 .0011499

Table 3b : Numerical solutions obtained for ω  when x = 0.2 and 0.7 (Re = 1000)

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x = 0.2
Centred

Difference
.0208293 .0340898 .0425407 .0475625 .0494725 .0481154 .0431501 .0340898 .0201854

AGE .0208293 .0340898 .0425407 .0475625 .0494725 .0481154 .0431501 .0340898 .0201854
EDG .0216508 .0351961 .0434897 .0486152 .0506435 .0494292 .0443268 .0351961 .0207396

x = 0.7
Centred

Difference
.0248889 .0425407 .0542726 .0608966 .0629378 .0607102 .0542726 .0431501 .0258641

AGE .0248889 .0425407 .0542726 .0608966 .0629378 .0607102 .0542726 .0431501 .0258641
EDG .0253344 .0434897 .0556858 .0624054 .0645339 .0621464 .0556858 .0443268 .0267076
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6.0 PARALLEL IMPLEMENTATION

Recall that in the numerical algorithm presented, for each
outer iteration there will be two EDG inner iterative
processes involved; one for ψ  and another one for ω .  In
parallelising this algorithm, the outer iteration is kept to be
sequential while the parallelising steps are done inside the
inner iterative processes.  Since we have a linear elliptic
equation in ψ  for the first inner iteration, and a linear
elliptic equation in ω  for the second inner iteration, we
will adopt the best strategy in parallelising EDG for the two
dimensional elliptic problem [2] in each inner iterative
process.  This means that for each inner iteration there are
four stages of computations such that an approximately
equal number of blocks of points are assigned to each
processor in each stage.

The general outline of the main algorithm just described in
solving the coupled equation (1.1)-(1.2) can then be
summarized as the following:

( Declaration section and initialization of 
data/constants to be used in the program )
call initialize_index  ( to initialize the points to 
the blocks )
call calculate_num_blocks    ( to calculate the 
number of blocks in each stage )  
create multiple processes

10 do k = 0 to 1       ( when k = 0, do inner iteration
       for ψ , when k = 1, do inner iteration for ω )
     if k = 0 then σ= 0
        else σ= Re/4
     end if
     m_fork(EDG)
     m_fork(Max_Error)
     if k = 1 then
          check outer iteration convergence (  if
                converge, go to 20, else go to 10 )
     end if
end do

20 kill child processes and summing up results
( Print results )
end

Here, subroutine EDG implements the EDG inner iterative
process in parallel.  In this procedure, caution should be
taken in keeping track of the variables evaluated since only
one equation is being used to evaluate ψ  and ω, one after
the other.  Also, the initialization of the values to be used in
each inner iteration are all done in parallel here such that
synchronizing points have to be placed in appropriate
places in the program to ensure the right answers are
obtained.  Subroutine Max_Error uses the same number of
processors available as in EDG to find the maximum error
in checking the convergence of the outer iteration.

To test the parallel algorithm just described, we use the
same problem (5.1)-(5.2) as before.  The experiment runs
on the same Balance multiprocessor at LUT, United

Kingdom.  The maximum number of iterations was set to
be 500, and p processors ( p = 1,2,...,9 ) were used for n =
61, 91 and 121 with Reynolds number Re = 1 and 1000.
The elapsed times against the number of processors were
plotted for Re = 1 and 1000 and are shown in Figs. 5 and 6
respectively.  Speedup values are shown in Table 4.
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Fig. 5:  Time in seconds when Re = 1 with sizes of n
as shown
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Fig. 6: Time in seconds when Re = 1000 with sizes of n
as shown.

7.0 CONCLUSIONS

For the sequential algorithm, the symmetry of the EDG
computed values indicate that they are good approximations
to the exact solution.  But as Re gets larger, the computed
values seem to lose their symmetrical properties slightly,
indicating a small decrease in accuracy.  Furthermore, if we
set 150 as the maximum number of iterations, the method
gets to be divergent for Re > 6954.  This is due to the terms

( )Re
 i -1, j-1

k
i+1, j+1

k+1)

4
1ψ ψ( ) (+ −  and ( )Re

 i -1, j+1
k

i+1, j-1
k+1)

4
1ψ ψ( ) (+ −    in the

vorticity Eq. (2.4) which have become so large that the
coefficient matrix A has lost its diagonal dominance.  This
also explains why the method is diverging in its attempt to
generate the vorticity solutions ωij

(k+1)  in the second inner

iteration (see Table 1).  The results from AGE scheme
portray similar behaviour as the four-point EDG.  Between
these two methods, it can be seen that AGE is better in
accuracy compared to EDG, with its numerical solutions
being identical with the ones obtained from the well known
centred difference scheme in all of the cases attempted.
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However, one big drawback is that AGE is far more
expensive in terms of execution time.  In all cases observed,
it can be seen that the EDG method requires only about 11-
28 % of the time required by the AGE scheme.  This is due
to the latter’s higher computational complexity in its
iteration formula, while for EDG, it’s iterative fo rmula is
less complicated and only half of the total nodal points are
involved in the iteration.  The iteration count for AGE
increases at a slower rate than EDG as Re gets larger so that
AGE converges for Re ≤  7334 compared to 6954 for EDG.

Table 4 : Speedup values for the parallel 4-point EDG

Size of
n

Number
of Procs.

(p)

Speedup
values when

 Re = 1

Speedup
values when
 Re = 1000

61 1
2
3
4
5
6
7
8
9

1.000
1.968
2.907
3.789
4.804
5.670
6.519
7.391
8.414

1.000
1.976
2.932
3.845
4.864
5.749
6.569
7.498
8.652

91 1
2
3
4
5
6
7
8
9

1.000
2.016
2.986
3.946
4.891
5.822
6.709
7.606
8.524

1.000
2.022
3.018
3.980
4.954
5.912
6.822
7.752
8.722

121 1
2
3
4
5
6
7
8
9

1.000
2.027
3.026
4.020
5.009
5.972
6.914
7.863
8.804

1.000
2.021
3.024
4.020
5.015
6.006
6.963
7.975
8.921

For the parallel implementations, nearly linear speedups
were obtained in all cases attempted, with the performance
being slightly better when Re = 1000 compared to when Re
= 1.  This indicates that the problem is able to benefit most
from the parallelisation as Re gets larger and as the amount
of work increases.  Overall, the best speedup values were
achieved when n = 121 and Re = 1000.  In conclusion, the
four-point EDG proves to be a viable alternative as a fast
solver for the steady Navier-Stokes problem sequentially
and in parallel.
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