
Malaysian Journal of Computer Science, Vol. 10 No. 1, June 1997, pp. 75-80

75

DRAWING FLOWGRAPHS

Bob Lockhart
The Mathematics Department
Universiti Brunei Darussalam

Tunku, Gadong,
Bandar Seri Begawan Negara Brunei Darussalam

email: robert.lockhart@rl.ac.uk

Robin Whitty
Centre for Systems and Software Engineering

South Bank University
Borough Road, London SE1 0AA

United Kingdom

ABSTRACT

Studies the problem of representing flowgraphs on
computer screens and describe an iterative path-searching
algorithm which does this.

Keywords: Flowgraphs, directed graphs, path

1.0 INTRODUCTION

Flowgraphs are simply directed graphs with identified Start
and Stop nodes and such that all nodes are on Start - Stop
Walks and the stop node has out degree zero.

Flowgraphs occur naturally in many situations. We are
interested in them because they are convenient descriptions
of the logical flow control of computer programs [1].

The basic control structures of imperative programming
languages match with corresponding basic Prime
flowgraphs.

One can parse the flowgraph of a given program into its
constituent primes: REPEAT UNTIL loops, WHILE DO
loops, CASE statements etc. and, because this
decomposition can be shown to be unique, one can use it to
obtain software measurements. This idea (which is covered
more fully in [1, 2, 3]) is the rationale for the Esprit Two
COSMOS project1 which built a tool to analyse programs
into flowgraph for measurement purposes. Formal
Specification languages, Imperative Programming
Languages, and Entity Relationship Diagrams can all be
processed to obtain metric information in this way. So the
COSMOS tool provides a common set of measurements for
a wide range of programming languages.

The COSMOS development has a user interface. Our field
trials convinced us that its potential users wished to have
some sort of visual representation of the flowgraphs which
underpin it.

For this reason, we began to consider ways of displaying
flowgraphs to our customers. This paper reports on that

1 COSMOS is ESPRIT project 2686 and was funded by the
European Commission and the Austrian Government’s
“Innovations & Technologiefond”.

work.

The next section outlines the iterative drawing algorithm
which we use and mentions some cosmetic enhancements
to that original idea.

Section three covers various display facilities which our
approach permits.

The final section gives some technical information about
the design and implementation of our drawing program.

The COSMOS CASE tool is commercially available from
Techforce, Leiden, Netherlands. There has been no
previous publicly-available account of our drawing
algorithm, although brief accounts of it were produced in
internal documents within the project. The recent academic
enhancements of the tool have not been described before.

2.0 THE LONGPATH DIS PLAY METHOD

2.1 Terminology

A Walk through a flowgraph is a finite sequence of nodes in
which any two consecutive nodes are connected by a
directed edge leading from the first to its neighbour and
such that consecutive edge directions do not oppose each
other. The Length of a walk is the number of edges in it.
Paths are walks in which no node occurs more than once.
Trails are walks in which no edge occurs more than once.

Consider this (prime) flowgraph:

L 2 (Two-decision loop)

1

2

3

4

5

Lockhart and Whitty

76

Node 1 is designated as the flowgraph start node. Node 5 is
its stop node. The sequence of nodes: 1,2,3,4,1,2,3,5 is a
(start-stop) walk but not a trail. It has length 7. The
sequence 1,2,3,4,1,5 is a (start-stop) trail but not a path. It
has length 5. Finally, 1,2,3,5 is a path with length 3. It is
the larger of the two start-stop paths in this flowgraph.

Counts of the various sorts of start-stop walks which can
occur are useful software Testability metrics [2]. Paths are
of particular importance to our drawer—its methodology is
based on a decomposition of the flowgraph into disjoint
paths, ordered by size.

2.2 The Longpath Method - decomposition

We start by splitting the flowgraph up into paths. This is
done in the following three steps and results in each node
being assigned a path number:
1. Find the longest start-stop path. Assign all of its nodes

to path one.
2. Examine all paths which start at nodes not yet assigned

a path number. Find the longest such path in which all
of nodes, other than the final one, are as yet unassigned.
Assign all nodes of this path, other than the final,
assigned node, to path number N + 1, where N is the
highest previously assigned path number.

3. If all nodes are now assigned to path numbers: finish.
Otherwise: go to (2).

We continue by associating two co-ordinates with each
node, based upon the path decomposition we have
achieved. These two co-ordinates are the path number and
the position of the node on its path. So, the start node will
have the co-ordinates (1,1) because it is the first node on
the first path, and the stop node will have the co-ordinates
(1,Y) (assuming Y nodes appeared on the original start-stop
path).

The co-ordinates associated with each node define a
conceptual grid which is the basis of our display method.
Suppose that the maximum first co-ordinate is X and the
maximum second co-ordinate it Y. In that case, the
algorithm detected X paths, the longest of which had length
Y

2.3 The Longpath Method - Display

We display the flowgraph as follows:
1. Consider the top left vertex of the screen as the origin

of two Cartesian axes: an X-axis stretching
horizontally from the origin, and a Y-axis extending
vertically down from it. These axes are coordinatised
uniformly so as to give the bottom right screen vertex
the co-ordinates (X+1, Y+1). Nodes of the flowgraph
are now allocated screen positions defined by their co-
ordinates on the grid formed by our two co-ordinate
axes. It will be appreciated that disjoint paths appear
on equidistant, parallel, vertical lines.

2. Where possible, edges connecting flowgraph nodes
are drawn as straight lines. The policy is to first
attempt to draw straight lines connecting nodes with
nodes either vertically below them on the grid or to
their right, and then to draw in the other edge
connections. Curves are used only to avoid line
clashing or edges appearing to intersect with
intermediate nodes to which they are not, in fact,
connected. The virtual grid structure facilitates this
kind of simple geometric decision-making.

The flowgraph L2 would be drawn like this:

L 2 (unenhanced)

1

2

4

3

5

There are two paths, the longest being the start-stop path
(which has length 3).

The co-ordinates of the nodes (in order) are: (1,1), (1,2),
(1,3), (2,1) and (1,4).

2.4 Cosmetic Enhancements

In response to the reaction of our customers we modified
our display algorithm in these respects:
1. We cater for pathological “flowgraphs” which are

disconnected or which have several nodes with out-
degree zero. These came up in the application of our
tool to formal specifications. Our policy is to display
multiple stop nodes at the lowest vertical level (that is -
to give each of them the highest possible Y co-ordinate).

2. Paths subsequent to the first are not always displayed
with their first nodes at the highest vertical level (=
lowest possible Y co-ordinate). This enhancement was
made for purely cosmetic reasons after alpha-testing.
We now fix the vertical orientation of these paths by
considering their connections with paths to the left,
“averaging” the effects in order to optimise the number
of horizontal connections.

3. If it should so happen that the algorithm delivers a
whole path with nodes {(a,m) : m=k ...N}, such that
there are no nodes in any of the screen positions { (a-
1,m) : m=k ... N} then the nodes in question are re-
assigned to screen co-ordinates {(a-1,m) : m=k ...N}.
That is, the path is displaced vertically to the left.

Drawing Flowgraphs

77

However, this is not done if path in question ends on a
multiple stop node. This particular modification
reduces the number of vertical lines appearing in the
grid and means that some paths can appear vertically
above some of their fellows.

The input to our drawer is a textual description of the
flowgraph to be drawn (see (4.3.1) for details). The drawer
counts nodes in the order in which they are presented to it
and displays them as small circles containing their number.
Parameterised size restrictions cause the program to display
nodes as small black circles, or even not to display them at
all, in the case of large flowgraphs. Start and stop nodes
are distinguished by slightly larger screen node
representations. All edges are depicted with small arrows
at their centre, giving orientation.

These cosmetic enhancements would produce this display
for L2.

L 2 (enhanced)

1

2

3

4

5

Notice that the co-ordinates of node 4 have changed from
(2,1) to (2,2) in order that its screen position is symmetric
with respect to nodes 1 and 3 (with which it connects). All
node numbers are shown.

Obviously, our drawer is designed to handle considerably
more complicated flowgraphs than the one shown.

3.0 DISPLAY FACILITIES

The grid facilitates various geometric manoeuvres on the
screen image of the flowgraph.

At present, we have implemented three of these (Zoom
Lens, Store and Retrieve, flowgraph decomposition) but
we have other developments in the pipeline.

Facilities are invoked by standard response buttons built
into the display.

3.1 The Zoom Lens

The whole flowgraph is displayed together with a small
rectangular box at the top left screen position (covering the
start node). This box is to be thought of as a “Zoom Lens”.
Its edges are always aligned with half point grid co-
ordinates (so, its top left corner would initially have the grid
co-ordinates (1/2,1/2).

One can perform these operations using the lens:
1. Alter the size of the lens - independently changing its

horizontal and vertical dimensions x and y to any
integral values in the range 1 ≤ x ≤ X, 1 ≤ y ≤ Y.

2. Move the lens through the screen representation of the
flowgraph in any horizontal or vertical direction at the
rate of one grid dimension at a time, in order to focus on
a particular area, or to return instantly to the initial
position.

3. Zoom in on the part of the display which the lens
currently covers - that is, replace the existing display by
a whole-screen representation of the part of it which
was covered by the lens (this will usually cause some
magnification). If the flowgraph is so large that node
numbers are not displayed (see (2.4) the zoom option
can be used to reinstate them in an enlarged detail of the
whole representation.

4. Move the “Zoomed Detail” vertically or horizontally, or
back to the initial position. This is analogous to moving
a microscope lens over a specimen.

5. Un-Zoom from a given detail to the whole flowgraph,
leaving the lens box shown in the same part of the
flowgraph and with the same relative size.

3.2 Store and Retrieve

The grid co-ordinates of the nodes and the original
description are all that is required to reproduce a display.
Once obtained, it is possible to store this information into a
text “retrieve file” which is headed by a parametrised
keyword. If the program subsequently encounters a text
file which starts with the keyword, it simply displays the
flowgraph without repeating the path decomposition. The
store and retrieve option makes it possible to do the
decomposition processing in batch mode, retrieving the
screen image at will, in real time 2. One can even design a
particular screen image by manipulating the information
given in a retrieve file. This can be useful in expositions.

3.3 Flowgraph Decomposition

The decomposition of flowgraphs into constituent primes is
important to the calculation of a wide range of software
metrics. Our path searching methods can be used to give a

2 Our workstation could take an hour to decompose
flowgraphs with more than a thousand nodes but the
subsequent display takes just seconds.

Lockhart and Whitty

78

visual, successive, account of this decomposition.3 In
particular, the constructive processes of Sequencing and
Nesting may be represented.

4.0 FURTHER TECHNICAL INFORMATION

4.1 Path Searching

The path searching algorithm works by running Monte
Carlo simulations on the proffered flowgraph. The
simulations use random numbers to make choices at nodes
with out degree more than one.

The simulations are not designed to be exhaustive:
exhaustive searching would result in unacceptably lengthy
processing. A good approximation is often all that is really
required to produce a reasonable screen image.

The point is that we are concerned only with displaying
flowgraphs intelligibly. Whether or not we achieve the
“best decomposition”, as that might be defined by the pure
longpath algorithm, is of secondary importance.

The speed at which the path searching operates depends on
the size of the flowgraph and the power of the processor.
Our Spark 14 processor handled 50 node flowgraphs in
seconds, hundred node flowgraphs in minutes and thousand
node flowgraphs in hours.

We have implemented similar simulation techniques to
obtain stochastic approximations to Testability Metrics [2]
as part of the COSMOS tool. This important class of
metrics has hitherto been unavailable to static analysers
because they are difficult to calculate. We believe the
COSMOS tool is the first CASE tool to offer them.

Some recent work makes it possible to calculate some of
the testability metrics exactly [5]; but these methods are
heavily algebraic, and not so far appropriate to an industrial
tool.

4.2 Program Structure

The program is written in C. All displays were handled
using the Sunview window environment. Although this is
now obsolete, the program was designed to be as
independent of particular window systems as possible and
should port to other systems with the minimum of work
because the distinct functions of the program are
represented by distinct program modules and all appeals to
Sunview are quite basic, and made from one small module.

The program allocates and releases workspace dynamically
based on the size of the flowgraph that it is processing.

3 So far, this has only been implemented in the academic
version of the tool and used for teaching purposes.
4  Sun Microsystems Ltd.

There is no theoretical limit to flowgraph size but,
obviously, there will be an upper limit to the amount of
available space in any real environment.

4.3 Textual Input and Output

Textual processing is handled by one program module.

4.3.1 Input

Textual descriptions of flowgraphs are structured by
keywords indicating where node lists, edge lists, and start
and stop information is to be expected. These keywords are
defined in a C “include file” and may be tailored to
particular situations.
The program recognises all strings of displayable characters
which occur between the node keyword and the edges
keyword as individual program nodes (blanks terminate the
strings).

Repetitions are not treated as separate nodes.
Flowgraph files may contain annotation anywhere after the
start of the edge descriptions.

This would be an acceptable description of the flowgraph
L2 (the keywords used in this particular implementation are
shown in bold type and annotation is in parenthesised
italics).

Node first second 3rd 4th fifth
Edges (annotation can occur at any subsequent point)

first second (this says there is an edge linking the

node 'first' to the node 'second') second 3rd 3rd fifth

3rd 4th 4th first first fifth
start (this keyword signifies the end of the edge

descriptions) first
stop fifth

Our program first recognises the five strings which
represent nodes and, thereafter, matches those strings with
the strings it finds in the remainder of the description.

Unmatched strings, such as those occurring in annotation,
are ignored. Node numbering is based on the order in
which strings recognised as nodes occur in the input file
and is unrelated to any semantic meaning of the strings.5

This textual file would be displayed as was shown in (2.4).

4.3.2 Output

Although the program needs Sunview to set up a drawing
environment and produce a mechanism to get input from
the user (using buttons) the drawing mechanisms used

5 This policy may be altered a little by the program in that it
always numbers the start node as one and the stop node as
the largest node number appearing.

Drawing Flowgraphs

79

include only the ability to set/unset an individual pixel and
the ability to draw/undraw a straight line. All features of
the display, including curves, arrows and nodes, are
produced by appealing to these two facilities. We think
that any conceivable window system would allow us them
and that is the basis for our claim of extreme portability for
the program.

The current implementation of the Zoom lens presupposes
that the window system will “clip” displays that are
logically off screen.

This probably makes the lens a good deal less efficient than
it might otherwise be and is not an essential feature of its
operation. This sort of clipping is available in all window
systems.

4.3.3 Curve Drawing

We only link nodes by curves when straight lines would
produce a false or obscure screen image. Curves are
constructed by our own curve-drawing algorithm which is
used to produce all the curves and arrows in our drawer.

A previous account of this was given in [4]. So far as we
are aware, our method is unique to us.

The algorithm requires the user to specify the two
endpoints which are to be linked by the curve, and to
specify whether the curve is to arch to the left or right of the
first point (called the start point) in connecting to the
second point (called the end point).

One may also specify two curvature parameters -- real
numbers Z and γ in the range: 0 < Z, γ < 1 which influence
the shape of the curve.

In practice, our program adopts fixed default values for
these parameters which we apply to all our curves. We
usually set γ to the golden number: (√5 - 1)/2 and Z to
0.4.

The algorithm exploits the iteration possible in C functions
to draw the curve as follows:
Starting with the two nominated screen positions A & B,
the mid point C of the straight line connecting them is
found. A point P(0) is then constructed in such a way that
the ratio of lengths C-P(0) / A-C is equal to γ and A-C-
P(0) is a right-angle triangle with hypotenuse A-P(0).

Having found the point P(0), the algorithm calls itself twice
more, nominating as endpoints the points A and P(0), on
one call, and P(0) and B on the other. These two calls
produce further points P(1) and P(2) forming two new
right-angle triangles, but now the defining ratio is set to (Z.
γ).

The iteration then proceeds with four new calls on itself,
nominating the end points:

A-P(1), P(1)-P(0), P(0)-P(2), and P(2)-B.

Now, the defining ratio is set to (Z2. γ) and four new
points are produced: P(3), P(4), P(5) & P(6).

Each time a point is found it becomes the start point and the
end point for two further calls, on each subsequent iteration,
and each such call produces one further point.

At the nth iteration a further 2 1)(n − points are produced:
 P(2(n-1) - 1), P(2n - 2)

and the ratio used to do this is γ . Z(n-1) .

The points created by this method define a curve from A to
B.

Clearly, we do not perform an infinite number of iterations
to construct our curve. In practice, we continue until
contiguous points are within some pre-set Euclidean
distance of each other and then connect them with straight
lines.

There is no point in continuing with the iterations when the
points are less than one pixel distance apart. That would be
the ultimate resolution of any curve which could be drawn
by any method whatsoever.

We have found this method gives us nice symmetric curves.

Since the input information is simply the points to be
connected and the curve orientation, we need make no
special allowances for the expanded areas of the screen that
the Zoom facility provides. All Zooming does is alter the
screen co-ordinates of points that are connected by our
curves.

It would be possible to develop this idea, to draw
asymmetric curves, or symmetric curves through several
nominated points. It might also be interesting to investigate
how this technique relates to others and how efficient it is.

REFERENCES

[1] N. E. Fenton, Software Metrics - a Rigorous
approach. Chapman and Hall, London, 1991.

[2] R. Bache and M. Müllerberg, “Measures of
testability as a basis for quality assurance”, Software
Engineering Journal, March 1990, pp. 86-92.

[3] N. Fuchs and A. Pengelly, “Software Structure and
Cost Management - the Esprit 2 COSMOS project”,
British Telelcom Technology Journal, Vol. 9 No 2,
April 1991.

Lockhart and Whitty

80

[4] R. Lockhart, “The COSMOS flowgraph editor”, in
(J. Encarnaςáo, ed.) Eurographics Technical Report
Series-Graphics Research & Development in
European Community Programs (Eurographics ‘91)
pp. 27-38.

[5] R. Lockhart. “Direction calculation techniques for
testability metrics”, submitted.

[6] R. Bache & L. Leelasena. QUALMS - A Tool for
Control Flow Analysis and Measurement.
Obtainable from the Centre for Systems and
Software Engineering South Bank Polytechnic,
Borough Road, London SE1 0AA.

BIOGRAPHY

Bob Lockhart and Robin Whitty were the Goldsmiths’
College representatives of the COSMOS project, which
involved six industrial and academic institutions in four
countries.

Bob Lockhart now works in computing at the Central
Laboratory of the Research Councils, Chilton, Didcot,
England. His research interests are in Homological
Algebra, Software Engineering, and Biology.

Robin Whitty is Professor of Software Engineering and
Director of the Centre for Software and Systems
Engineering, South Bank University, London. His research
interests include Software Metrics, Graph Theory, and the
industrial application of Software Engineering.

