
Malaysian Journal of Computer Science, Vol. 10 No. 1, June 1997, pp. 53-63

53

ABSTRACTION IN AN OBJECT-ORIENTED ANALYSIS METHOD

Sai Peck Lee
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur, Malaysia

Fax: 603-7579249
email: saipeck@fsktm.um.edu.my

Colette Rolland and Jöel Brunet
Centre de Recherche en Informatique

University of Paris 1
17, rue de Tolbiac

75013 Paris, France
email: rolland@masi.ibp.fr

ABSTRACT

The recent interest in object-oriented analysis has resulted
in the introduction of abstraction in the analysis phase of
information systems development life cycle. Abstraction
has been proven to be a powerful object-oriented construct
through which software complexity can be reduced and
software productivity can be improved. Our main aim in
this paper is to provide the support of abstraction for both
the statics and dynamics of an information system in an
object-oriented analysis method. In this way, it allows the
analyst to view the basic characteristics of major
components of an information system at different
perspectives.

Keywords: Object-oriented analysis, Information
systems development, Conceptual model,
Abstraction, Decomposition

1.0 INTRODUCTION

The great advancement in object-oriented programming [1,
2], coupled together with the influence of artificial
intelligence and databases [3, 4] during the past few years
have given rise to the adoption of the object-oriented
paradigm in information systems (ISs) development
methodologies [5, 6, 7]. In fact, this has now become a
common topic of discussion, in particular, among the circle
of computer methodologists and systems engineers, hoping
to exploit the useful features of this paradigm for a better
development not only in design methods [8, 9], but also in
analysis methods [10, 11]. There seems to have a wide
consensus for the object-oriented paradigm in view of its
adoption in many research areas. This is due to the fact that
the object concept provides a more natural way for
representing real-world objects.

This is the main reason that led to the emergence of object-
oriented analysis methods within the framework of object-
oriented ISs development life-cycle [12, 13, 14]. Moreover,
the recent advancement in the field of computer aided
software engineering (CASE) together with the wide
availability of CASE tools [15, 16] in the computer market
have helped not only the automation of analysis methods to
become a reality, but also the facilitation and acceleration
of the automation process [10, 12].

The consideration of the object-oriented paradigm in the
analysis point of view can be noticed from the increasing
development of conceptual models borrowing object-
oriented concepts [11, 17, 18, 19]. However, the
emergence of conceptual modelling have brought with it
other problems to the analysis of ISs, among which, is the
problem of providing abstraction at the conceptual level for
dealing with the enormous information represented in the
conceptual schemas of large applications.

Abstraction has been proven to be a powerful object-
oriented construct and as a way of reducing complexity of
software [20]. Software productivity is inversely
proportional to software complexity [21]. As such,
abstraction is a way of improving software productivity.
The main aim of abstraction is to allow things to be
represented in a more significant nature by omitting
irrelevant details, and thus, leading to a better
comprehension by the end user. This is important as the
concepts formalised by many existing conceptual models
do not model real-world objects as perceived by the end
user. An efficient abstraction mechanism allows an abstract
structure at the appropriate level of abstraction to be
constructed from the basic building blocks of an IS.
Besides this, the validation of a conceptual schema in
different user points of view can be carried out with the
help of such mechanism [22].

Other than providing a better comprehension of the
information represented in the conceptual schema to the
end user, abstraction also helps in the maintenance of the
software in cases where there is a growth or an evolution of
the specification that arises to the conceptual schema. This
is normally the case that happens in most of the
organisations in the fast-moving commercial world of
today.

As such, numerous new concepts have been introduced in
the literature to deal with abstraction, such as, subsystem
[23, 24], cluster [23, 25, 26], schema [27], semantic context
[28] and natural object [22], to name just a few, where each
concept represents an abstract structure which is obtained
depending on the technique considered. These concepts
have been defined in order to handle the immense
information of large systems.

In this paper, we intend to describe the support of
abstraction in the O* object-oriented analysis method [17,

Lee, Rolland and Brunet

54

29], which has been classified as a prescriptive method that
is supported by the O* conceptual model together with a set
of methodological prescriptions (methodological
guidelines) for the analysis of object-oriented ISs. Our aim
is to provide the support of abstraction for both the static
and dynamic aspects of an IS, so as to allow the
representation of real-world objects as perceived by the end
user at different perspectives.

The relevant research is summarised in the next section.
This is followed by the description of the O* object-
oriented method in Section 3.0. The proposed abstraction
mechanisms for the statics and dynamics of an IS are
respectively given in Section 4.0 and Section 5.0. Finally,
some concluding remarks are given in the last section.

2.0 SURVEY OF ABSTRACTIO N MECHANISMS

In this section, we shall trace the historical evolution of
abstraction and discuss some abstraction techniques that
have been described in the literature. There is some clear
cut in the application of abstraction in software
development, such as, its application within the areas of
programming-in-the-small and programming-in-the-large
[21, 30, 31]. Application of abstraction dates back at the
time when researchers were in search of a better technique
for improving programming practice. In the early days of
research, the development of abstraction techniques was
centred around high-level programming languages and
abstract data types [1, 32], that is, within the area of
programming-in-the-small.

Within the area of programming-in-the-large, over the
years, the application of abstraction has evolved to the
present stage where it is widely applied in software
architectural level of a system, such as, functional
decomposition [33, 34, 35] and object decomposition [10,
12]. At this level of software design and reuse, abstraction
focuses on essential properties of system organisation. It
captures the basic characteristics of significant components
of the system and their interactions. Hence, a special term
called higher-level abstraction, was employed by Shaw
[21] for describing this sort of abstraction.

Functional decomposition describes a large complex system
as a hierarchy of subsystem functions. Such decomposition
is supported by a wide range of structured analysis
techniques [33, 35], among which data-flow diagram [18,
35] is the most common technique used in the
decomposition process. On the other hand, object
decomposition defines a system as a hierarchy of objects.
Objects belonging to the same domain are grouped into a
subject area [10]. In this way, it is possible to define a
collection of objects sharing some basic properties and
behaviour. Functionality of a system is no longer an
important criterion in such decomposition. A subsystem is
supposed to possess strong interactions between objects
within it and weak interactions with objects from other

subsystems. In other words, the internal coupling of a
subsystem must be tighter than its external couplings with
other subsystems.

According to [21], a good abstraction is ignoring the right
details at the right time. Hence, a good abstraction
mechanism should provide support for helping the analyst
in abstracting the details that are significant at a certain
point in time. We shall begin by studying numerous works
carried out by some researchers that involve grouping of
entities and relationships from the extended Entity-
Relationship models such as those defined in [25, 26, 27].

Kozaczynski’s work [25] involves the development of
entity class grouping for defining a new entity class as a
grouping of existing entity classes or subclasses. There are
2 types of entity class groupings: (1) Homogeneous
grouping : it contains subclasses from the same
specialisation tree. It combines two or more subclasses of a
single root entity class by applying the operator union; and
(2) Heterogeneous grouping: it contains subclasses from
different specialisation trees. On the other hand, Teorey’s
work [26] involves the derivation of a clustering technique
to produce a bottom-up abstraction of natural groupings of
entities. It is possible to apply clustering repeatedly
resulting in layered levels of abstraction. The highest-level
entity cluster that represents the entire database conceptual
schema is called root entity cluster. An entity cluster
maintains the same relationships between entities inside and
outside it.

Desfray’s work [27] deals with the integration of various
synthesis mechanisms in the Class-Relationship model,
with the aim of providing abstractions for both classes and
relationships. The notion of schemas has also been
introduced. A schema corresponds to a set of classes
belonging to the same domain. It is possible to define a
domain from other domains through use relationship or
inheritance relationship. In this sense, schemas are
analogous to subject areas employed by Coad and Yourdon
[10].

Abstraction has also been extensively applied in view
management [36, 37]. Shilling [36] defines a view as a
simplifying abstraction of a complex structure. Czejdo’s
work [37] involves the integration of views into the Object-
Relationship model of OSA. The definition of view
semantics is either derived from query expressions over a
semantic-model instance or is specified as semantic
submodels.

In spite of the numerous approaches providing some sort of
abstraction support, there is not much research on the
abstraction support that captures also the behavioural
aspects of objects, which is very much stressed by Wand
[24] in the formalisation of ISs concepts. This is important
as it provides abstraction on interaction between objects,
thus, allowing the user to perceive an IS at another
perspective.

Abstraction in an Object-Oriented Analysis Method

55

3.0 THE O* METHOD

The O* method is an object-oriented analysis method ,
which is composed of a conceptual model referred to as the
O* model and a set of methodological guidelines. The
background of the O* method and its model will be
presented in the following sections. For reasons of space
limitation, the methodological guidelines are not presented
in this paper.

3.1 Background

Before we proceed to the details of the proposed abstraction
mechanisms, we would like to give a brief presentation on
the O* method [17, 29]. The O* method was developed
within the framework of the ESPRIT II project named
Business Class1 [38]. The tool supporting the method
allows the analyst to define a conceptual schema
representing the description of a real-world system with the
aid of the O* methodological guidelines. Moreover, a set
of interactive and deferred controls corresponding to the
verification of the conceptual schema have been built into
the tool. The conceptual schema is divided into two main
parts, namely, the static schema representing the structural
aspects of an IS, and the dynamic schema representing the
behavioural aspects of the IS, through the hypothesis that
the behavioural aspects are responsible for causing state
changes to the structural aspects of the IS.

3.2 The O* Model

The two main concepts of the O* model, namely, objects
and classes, are adopted from the object-oriented paradigm.
The main aim of the model is to adopt the concept of
objects from the analysis phase right through the
implementation phase. Moreover, the model also takes into
account the life cycles of objects for the determination of
static links between classes, besides the inheritance links of
the object-oriented paradigm. Two types of static links are
distinguished: reference link and composition link , where
each link can be defined between two classes after
identifying the dependency between the life cycles of
objects in these classes. A reference/composition link can
be of simple type or multiple type. For example, a simple
reference link connecting two classes indicates that a
referring object refers to one and only one referenced
object. On the other hand, a multiple reference link
indicates that a referring object can refer to 1 - N referenced
objects.

Other than the structural aspects, the model has considered

1 This project is supported by the European Commission under the
contract 5311 of the second European Strategic Program for
Research and Development in Information Technology (ESPRIT).
Telesystems (France) is one of the partners in the project and
University of Paris 1, as a subcontractor, involves in the
development of the analysis environment.

the concepts of events and operations to take into account
the behavioural aspects of ISs at the conceptual level.
Three groups of events are distinguished: external events,
internal events and temporal events. External events
correspond to the events occurring in the environment
outside an IS. Internal events correspond to the internal
state changes or rather the system responses of the IS, and
temporal events correspond to the events whose
occurrences depend on the description of time. On the
other hand, an operation represents an action performed on
an object of a class, thus, causing a state change to that
object.

We shall represent the formalisation of the various aspects
of the O* model through an example showing two main
functions of a business firm, namely, order processing and
inventory management. Having studied the requirement
and the behaviour of these functions of the organisation, the
structural aspects and behavioural aspects of the business
conforming to the O* model are established respectively in
the static schema and dynamic schema as shown in Fig. 1
and Fig. 2, with the aid of the O* methodological
guidelines.

Account

Person

Client

Client
category

Order

Supplier

Supplier
order

Order
line

Product

Supplier
order line

A B An object of A is composed of an object of B (the object of A is the
composite object and the corresponding object of B is the component object)

A B
A B

A B
A B

An object of A is composed of several objects of B
An object of A refers to an object of B (the object of A is the referring
object and the corresponding object of B is the referenced object)
An object of A refers to several objects of B
An object of A inherits from an object of B

Fig. 1: Static schema

The static schema is set up with a set of atomic classes
storing the persistent information of the organisation.
These classes are interrelated among themselves through
static links. A composition link between a composite class
and a component class expresses a strong coupling of
behaviour between a composite object and its component
objects. It is derived semantically in such a way that the
life cycle of a component object is totally included in the
life cycle of its composite object. In other words, the
existence of the component object depends on the existence
of its composite object. Moreover, a component object
belongs to one and only one composite object and their life
spans are approximately the same. In contrast, a reference
link defined between a referring class and a referenced class
expresses a weak coupling of behaviour between a referring
object and its referenced objects. The life cycle of the
referring object is totally included in the life cycle of its
referenced object. Moreover, a referenced object may be
shared by several referring objects.

The representation of the behaviour of the business

Lee, Rolland and Brunet

56

activities is summarised as shown in Fig. 2. For example,
the arrival of an order via a sales personnel is represented
by an external event named arrival of order. Therefore,
when this event happens, an object corresponding to the
order and an object corresponding to the client who made
the request for the order might be created depending on the
triggering conditions defined on the triggers of the event.
For instance, the condition not c2 specifies the non-
existence of an object of this client in the class Client. Note
that the component classes are not represented in the
dynamic schema as they have been encapsulated into the
composite classes (see Section 5.3).

arrival of order
order cancellation

creation
Client

 not c2

creationdelivery

cancellation

Order

not c4

replenishment
Product

arrival of shipment

order delivery

out of stock

supply

Supplier
order

creation

Supplier

not c3

arrival of payment

not c1

delivery

delivery

payment

c1 : state(Client) = "in default"
c2 : exist(Client)
c3 : exist(Supplier)
c4 : state(Order) = "delivered"

event
operation

class

Fig. 2: Dynamic schema

Other than the dynamic schema, a state transition graph
can be attached to a class for describing the local behaviour
of its objects. It defines a set of distinct object states, in one
of which, an object persists during a certain period of its
life cycle. State changes of an object are specified by a set
of state transitions described in the form of a triplet (initial
state, operation, final state). This describes how an object
undergoes state change at a certain point in time. The pair
initial state, internal operation describes the object pre-
condition, whereas final state describes its post-condition.
An example of a state transition graph is given in Fig. 3.

So

created

settled

delivered

creation cancellation

delivery

payment

Fig. 3: State transition graph of the class Order

The state So specifies the non-existence of object and it is
compulsory to define it in each graph. The state transition
(created, delivery, delivered) stipulates that the operation
delivery can be executed only if the object initial state is
created, and as a result of this condition, the object will be
in only a possible final state, delivered.

4.0 ABSTRACTION OF THE STATICS

Although the structural aspects and behavioural aspects of
an IS can be modelled with the aid of the set of

methodological guidelines, the model is enhanced through
the integration of abstraction. Hence, the notion of abstract
class that groups several classes is introduced in the model
to provide a better representation of real-world objects.
Grouping is an operation required to group several classes
to form such a higher-level construct. It can be applied
iteratively on classes and/or abstract classes to produce a
higher-level abstraction. In some way, an abstract class is
comparable to a subsystem, such as, each class is allowed
to be grouped into only one abstract class.

4.1 Strategy

Our strategy has much similarity with the strategies used by
Coad and Booch, where objects are grouped into subject
areas, in particular, with the strategy of Coad [10], where a
hierarchy of classes are grouped into a subject area in terms
of aggregation. Moreover, our strategy allows grouping to
be applied on a hierarchy of objects in terms of
specialisation (see section 4.2).

One of the main static grouping strategies is to group
classes that are semantically and behaviourally related, thus
resulting in the formation of an abstract class that
suppresses other irrelevant details and preserves only some
salient features at a certain level of abstraction.

The static grouping mechanism allows abstract classes to be
constructed not only from composite and component
classes, but also from specialised and generalised classes,
as well as from referring and referenced classes. This
reduces the number of classes represented in the conceptual
schema. An abstract class has a fuzzier semantics as
compared to an atomic class, as all underlying objects and
their static links are hidden in it. This is in accordance with
the general abstraction principle, which states that the
complexity of a problem can be reduced by omitting
irrelevant details. Levels of abstraction can then be
distinguished depending on the amount of details omitted,
which the latter increases with the degree of nesting of
abstract classes. An abstract class is diagrammatically
represented by a dashed border.

Other than this, the static grouping mechanism is also
capable of deducing static links on an abstract class through
a set of derivation rules. Basically, these rules are stated as
such:

1. The root is a class which is situated at the highest
level of a hierarchy of classes in terms of
inheritance, composition or reference.

2. The semantic significance of the abstract class is
centred around the root class which gives the most
general information on the underlying classes.

3. The name of the abstract class will be the name of
the root class.

4. All static links coming into or going out of a class
in the grouping will be naturally transferred to the
abstract class.

Abstraction in an Object-Oriented Analysis Method

57

4.2 Abstraction of Specialised Classes

Abstraction of specialised classes is associated with the
grouping of a generalised class together with its specialised
classes. According to the derivation rules, a static link
coming into a specialised class from any class outside the
grouping will be naturally transferred to the abstract class.
Fig. 4 shows a general example of grouping for the
abstraction of specialised classes.

R

S 1

S 3

Root

SpecialisedS 2

Fig. 4: General example of grouping at specialisation level

The root class R will be the ultimate abstract class if
grouping is applied on this hierarchy. This is the most
natural way of grouping as all characteristics of a
generalised class, including also the behavioural
characteristics, are inherited by the specialised classes.
Therefore, the emphasis of abstraction is centred around the
generalised class in such a way as to omit the additional
characteristics possessed by the specialised classes. Hence,
the abstraction extracts only the characteristics of the
generalised class. In this way, the abstraction no longer
gives the exact information on certain phenomena
represented by the underlying specialised classes. The
information given by this kind of abstraction will be less
concise and normally relates a general statement. For
instance, Fig. 5 illustrates that a client who makes a request
for an order is a person, this fact can be abstracted into a
person makes a request for an order.

O r d e rP e r s o n

C l i e n t
P e r s o n

O r d e r

Fig. 5: Abstraction of the specialised class Client into the
abstract class Person

Mathematically, it can be formalised as such : ∀o ∈ Order,
∃p ∈ Person : o - -> p. It can be stated as such : for each
object in Order , o , it exists an object in Person, p, such as
o refers to p. Obviously, it is less concise to say that an
order refers to a person. It is true that a client makes a
request for an order, but it is false to say that each
individual does so. Therefore, the fact that an order refers
to a person is only a general case. The semantics of this
fact is imprecise and vague as to which particular individual
makes a request for an order. However, the simple
reference link transferred between the class Order and the

abstract class Person retains the original semantics. This is
because all instances of the specialised class Client which
were previously referenced to by the objects of Order also
figure in the generalised class Person according to the
definition of the model. As the abstract class Person is
centred around the generalised class Person, therefore, the
reference link between the class Order and the abstract
class Person is valid.

There is, however, a restriction for this sort of abstraction,
which is taken care of by the following consistency rule:

R1 : Consistency rule for a specialised class
If it exists a multiple inheritance of a specialised class
with some generalised classes, none of the generalised
classes can be separated from the specialised class in the
grouping. This means, a specialised class in the
grouping cannot be at the same time a specialised class
of an external class.

For instance, it is forbidden to have the case of Fig. 6.

E m p l o y e e

Studen t

S tuden t E m p l o y e e

Work ing s tuden t

Fig. 6: Forbidden example

Mathematically, it is formalised to as such : ∀s ∈ Student,
∃e ∈ Employee : s = e. This is not allowed as such
abstraction will generate inconsistent information. The
grouping of the class Student and the class Working student
generates an abstract class Student in which all instances of
students are figured. However, the semantics of the
inheritance link between the abstract class Student and the
generalised class Employee indicates that all instances of
Student should also be figured in Employee. This means
that every student is also an employee, which is not true as
not all students are employees. In conclusion, the
inheritance link deduced between the abstract class Student
and the class Employee violates the original semantics.

4.3 Abstraction of Component Classes

In any subject, either in the molecular model, economic
model or any organisational model, interactions between
objects within a component are always more frequent than
interactions between objects from different components.
For instance, in the molecular theory, intra-molecular forces
are tighter than inter-molecular forces. This fact can be
related to the high-frequency dynamics of a component
involving internal interactions and the low-frequency
dynamics involving interactions with other components.

A composition link defined between a composite class and
a component class expresses such a strong dependency
between these two classes. The behaviour of the objects in

Lee, Rolland and Brunet

58

these classes is strongly coupled, such as the creation or
deletion of a component object is usually done via its
composite object. Besides this, there is a strong
relationship in the natures of a composite object and each of
its component objects. These objects normally originate
from the same phenomenon. Hence, it is quite natural to
integrate these objects into a unified whole, which is more
abstract and closer to the real-world signifying this
phenomenon. In this way, it is possible to group the root
class and its specialised classes together with their
components classes. Fig. 7 shows a general example of
grouping for abstraction of component classes.

R

S1

S3 C1 C2

C 3

C4

C 5

C7C6

Root

Specialised

Component

S2

Fig. 7: General example of grouping at composition level

Notice that some of the specialised classes are also
composite classes (C5, C6). As before, a static link coming
into a component class from any class outside the grouping
will be naturally transferred to the abstract class. For
instance, Fig. 8 shows that a reference link comes from the
class Reservation and terminates in the class Room, which
the latter is grouped together with its composite class,
Hotel. This results in the transfer of the reference link from
the class Reservation to the abstract class Hotel.

R e s e r v a t i o nH o t e l

R o o m

R e s e r v a t i o n

H o t e l

Fig. 8: Derivation of the reference link coming from
Reservation and terminating in Hotel

Semantically, instead of saying, "A reservation of a room
in a hotel", which is a more precise statement, we might
say, "A reservation in a hotel", which is more fuzzy, as we
no longer know that a hotel is composed of rooms. Also,
the information on the room reserved is hidden in the
abstract class Hotel, as it is of no interest to us.

A static link which is originated from or terminated in a
class grouped might be converted to some other form
before it is transferred to the abstract class. For instance, in
certain cases, the static link transferred to an abstract class
can become multiple, such as the case as shown in Fig. 9.

The abstract class Order, including the composite class
Order and the component class Order line becomes
multiple references to the class Product.

O r d e r

O r d e r l i n e

O r d e r

P r o d u c t

P r o d u c t

Fig. 9: The abstract class Order becomes multiple
references to Product after the grouping

The fact that an order is composed of multiple order lines is
of no interest to us after the grouping. The same case arises
to the abstract class Order which gives a vague semantics
in terms of its underlying structure. As such, a set of rules
that derive static links on an abstract class can be set up as
shown in Fig. 10.

 X

 Y

Z

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

X

X

 X

 Y

 X

 Y

 Y

 X

 Y

 X

 Y

 X

Y

 X

 Y

 X

Fig. 10: Derivation of static links on an abstract class

There is a restriction to the derivation rules for abstracting
component classes. The restriction is being taken care of
by the following consistency rule:

Abstraction in an Object-Oriented Analysis Method

59

R2 : Consistency rule for a component class
A component class in the grouping cannot be at the
same time a component, specialised, or generalised
class of an external class.

For instance, it is forbidden to have the case of Fig. 11.

P a r tA i r p l a n e

S p a r e p a r t

P a r t

A i r p l a n e

Fig. 11: Forbidden example

The fact that an airplane is composed of many spare parts
which the latter in turn are parts, cannot be abstracted to the
fact that an airplane is a part, which is semantically wrong.

4.4 Abstraction of Referenced Classes

A reference link defined between a referring class and a
referenced class expresses a weak semantic dependency
and a low-frequency dynamics between these two classes.
The behaviour of the objects in these classes is loosely
coupled as their interactions are much weaker. Indeed,
each of these objects comes from totally distinct natures.
For instance, an object of the class Order refers to an object
of the class Client. These objects do not originate from the
same phenomenon. In addition, their relationship is only at
a superficial level in the sense that the actions suffered by
the referring object hardly affect its referenced object.

R

S 1

S1 C 1 C 2

C 3

C 4

C 5

C 7C 6

Root

Specialised

Component

S 2

Rf2 Rf4Rf3

Rf1

Referenced

Fig. 12: General example of grouping at the reference level

However, this does not prevent abstraction to be performed
on referenced classes, though abstract classes generated by

this sort of grouping are of less importance. These abstract
classes appear only locally on the static schema. The main
aim of the grouping is to hide referenced classes. Fig. 12
shows a general example of grouping for the abstraction of
referenced classes.

As before, there is a restriction to the derivation rules for
the abstraction of referenced classes, which is being taken
care of by the following consistency rule:

R3 : Consistency rule for a referenced class
A referenced class in the grouping cannot be linked by
any static link with an external class.

For instance, in Fig. 13, it is possible to group the referring
class Client and the referenced class Client category to
form an abstract class called Client as Client category is
not referenced to by any static link.

O r d e r

C l i e n t

C l i e n t O r d e r

C l i e n t c a t e g o r y

Fig. 13: Abstraction of the referenced class Client category

However, it is forbidden to group the class Supplier order
line and the class Product in Fig. 1 to form an abstract
class, as Product is referenced to by the class Order line.

A final conclusion can be drawn from the abstractions of
component classes and referenced classes in the derivation
of abstract classes. A static link derived on an abstract
class will become multiple via the following derivation
rule:

Let R be a root class and T be a terminal class of a path
linking R and T in the grouping. Let E be an external
class outside the grouping.

If there is a simple composition/reference link
which
is originated from T and terminated in E,
If there is a multiple composition/reference link
in the path linking R and T,
Then the derived static link on the abstract class
will be a multiple composition/reference link.

Notice that the abstract class of the example in Fig. 9 is
derived from this rule.

4.5 Illustration

It is possible to identify some groupings as shown in Fig.
14 on the static schema of Fig. 1.

Lee, Rolland and Brunet

60

A c c o u n t

P e r s o n

C l i e n t

C l i e n t
c a t e g o r y

O r d e r

S u p p l i e r

S u p p l i e r

o r d e r

O r d e r
l i n e

P r o d u c t

S u p p l i e r
o r d e r l i n e

Fig. 14: Identification of groupings on the static schema

The application of the above abstraction principle gives rise
to the outcome as shown in Fig. 15.

Supplier order

Person Product

Order

Fig. 15: Abstraction on the static schema

Notice that the simple reference link previously defined
between the class Supplier order line and the class Product
has been converted into a multiple reference link on the
abstract class Supplier order and terminated in the class
Product.

5.0 ABSTRACTION OF THE DYNAMICS

As it is the case where it is important to allow an IS to be
perceived in multiple views: static view, dynamic view and
architectural view, the support of abstraction for the
dynamic perspective of an IS is also as important. It is
through such abstraction that global behaviour of basic
components of an IS can be characterised.

5.1 Strategy

To provide for the abstraction of behavioural perspective,
the grouping mechanism must be able to deduce some
retrieved operations for including in the views of
specialised and composite classes in the dynamic schema.
A retrieved operation whose form of light border is actually
a virtual operation of the corresponding operation in a
generalised/component class.

5.2 Retrieved Operations of Specialised Classes

Views of specialised classes will be represented on the
dynamic schema so that reusability of generalised

operations can be demonstrated explicitly. All the inherited
operations of a specialised class will be generated in the
view of the specialised class. For instance, Fig. 16 shows
the view of Client in which the inherited operations are
related to their corresponding operations in the generalised
class, Person through use links.

c r e a t i o n

u p d a t e o f
p r o f e s s i o n

C l i e n t

d e l e t i o n

A c c o u n t

o p e n

P e r s o n

c r e a t i o n

d e l e t i o n

c r e a t i o n

u p d a t e o f
p r o f e s s i o n

d e l e t i o n

C l i e n t

Fig. 16: View of Client and its internal definition

As each operation in the model possesses an operation
type, it is possible to establish a semantic relationship
between an operation of the composite class and an
operation of the component class via a use link. Notice that
there are two use links originating from the operation of
creation in the view. This signifies that there is an
augmentation in the operation creation of Client, and in
this case, the generalised operation creation of Person will
be executed before the opening of account by the operation
open defined in the component class Account. In this case,
a generalised operation is executed before any operation of
the component class.

creation

cancellation

delivery

Order line
creation

creation Account

open

Client

deletion

creation of
Order line

deletion

update

deletion of
Order line

n

update n

Order

creation

Client

creation

cancellation

delivery
Order

deletion

creation of
Order line

deletion of
Order line

update

n

Fig. 17: Views of composite classes and their internal
definitions

5.3 Retrieved Operations of Composite Classes

Abstraction of component classes can be demonstrated
dynamically in the views of composite classes. The basic
point is to associate each operation of each component
class that deals with modification of a component object
with a retrieved operation in the view of composite class.
This means that any manipulation to a component object
will be done via the corresponding retrieved operation

Abstraction in an Object-Oriented Analysis Method

61

generated in the view. A use link is used for relating an
operation in the composite class to an operation in the
component class. We shall demonstrate this through the
examples as shown in Fig. 17. The first part illustrates the
view of the composite class Order and the second part
illustrates the view of the composite class Client.

The label n defined on a use link signifies that the
operation of the component class will be executed n times.
For instance, the creation of an object of Order will result
in multiple creations of order lines. The number of order
lines to be created depends on the argument n defined on
the use link between the operation creation of Order and
the operation creation of Order line. The same explanation
applies to deletion and update. In this way, the actual
behaviour of the component classes is hidden in the
retrieved operations of a view, and as such, interactions
between a composite object and a component object are not
demonstrated explicitly in the view.

5.4 The Concept of Actor

The notion of actor class has also been introduced. An
actor is a human or an artificial agent interacting with the
IS for exchanging information. It is an instance of an actor
class, the latter specifies the common characteristics of a
set of actors. For instance, an actor class characterises the
possible behaviour of its instances through external events
and external operations.

An actor interacts with the IS by way of external events and
thus causing state changes to the objects in the IS. An
external operation represents an action triggered by a
system response, which will be intercepted by an agent
corresponding to the actor. For instance, it is possible to
identify an actor class called Sales personnel for the
previous example. Graphically, it is represented as shown
in Fig. 18.

Sales
personnel

arrival of order

order cancellation

creation

Client
 not c2

creation

cancellation

Order

not c4

preparation
of payment

arrival of payment

not c1

existence of new order

payment

Fig. 18: Integration of actor into the dynamic schema

When the internal event existence of new order occurs, the
external operation preparation of payment will be
triggered. This response will then be intercepted by the

actor Sales personnel.

6.0 CONCLUDING REMARKS

With the recent rapid progress in both software and
hardware technologies, together with the increasing
demand of providing the analyst with an easy-to-use
supporting tool for the analysis of ISs, the integration of
efficient abstraction mechanisms has become important
research topic. The capability of the method to provide
efficient abstraction of the statics and dynamics of an IS
has been discussed. This allows the analyst to view an IS
in different perspectives of the abstraction.

The types of static links serve as an important basis for the
identification of the kinds of abstraction on the static
aspects of the IS. The abstraction of component classes is
based on the strong interactions between objects, whereas
the abstraction of referenced classes is based on the weak
interactions between objects. Grouping of a generalised
class and its specialised classes provides the most natural
way of abstraction and reusability.

REFERENCES

[1] B. Meyer, Eiffel: The Language. Interactive
Software Engineering Inc., 1989.

[2] C. Lécluse and P. Richard, "The O2 Database

Programming Language" in Proceedings of the
Fifteeth International Conference on Very Large
Data Bases, Amsterdam, 1989.

[3] C. Cauvet, C. Rolland and C. Proix, “A Design
Methodology for Object-Oriented Database” in
International Conference on Management of Data,
Hyderabad, 1989.

[4] W. Kim, “Object-Oriented Databases: Definition
and Research Directions” in IEEE Transactions on
Knowledge and Data Engineering, Vol. 2, No. 3,
Sep. 1990.

[5] D. T. Lee, “Computer Information System
Development Methodologies - A Comparative
Analysis” in National Computer Conference, 1987.

[6] T. W. Olle, J. Hagelstein, I. G. Macdonald, C.
Rolland, H. G. Sol, F. J. M. V. Assche and A. A.
Verrijn-Stuart, Information Systems Methodologies.
Addison-Wesley, 1991.

[7] C. Rolland and C. Richard, “The Remora
Methodology for Information Systems Design and
Management” in IFIP Conference on Comparative
Review of Information Systems Design
Methodologies, North-Holland, 1982.

Lee, Rolland and Brunet

62

[8] J. Martin and J. J. Odell, Object-Oriented Methods:
Pragmatic Considerations. Prentice-Hall, 1996.

[9] N. Prakash, “Specifying Operational Characteristics
of Information Systems in OOD” in Conference on
Object Oriented Approach in Information Systems,
Quebec, 1991.

[10] P. Coad and E. Yourdon, Object-Oriented Analysis.
Prentice-Hall, Englewood Cliffs, N. J., 1990.

[11] L. J. B. Essink, “Object Modelling and System
Dynamics in the Conceptualization Stages of
Information Systems Development” in Conference
on Object Oriented Approach in Information
Systems, Quebec, 1991.

[12] G. Booch, Object-Oriented Design with Application ,
Benjamin/Cummings. 1991.

[13] S. Shlaer and S. J. Mellor, Object Oriented Systems
Analysis. Yourdon Press, 1988.

[14] A. G. Sutcliffe, “Object Oriented Systems Analysis:
The Abstract Question” in Conference on Object
Oriented Approach in Information Systems, Quebec,
1991.

[15] C. McClure, “The CASE Experience” in The BYTE
Magazine, April 1989.

[16] G. Wilkie, Object-Oriented Software Engineering:
The Professional Developer's Guide. Addison-
Wesley, 1993.

[17] J. Brunet, “Modeling the World with Semantics
Objects” in Conference on Object Oriented
Approach in Information Systems, Quebec, 1991.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, Object-Oriented Modeling and
Design. Prentice Hall, 1991.

[19] K. Takagaki and Y. Wand, “An Object-Oriented
Information Systems Model based on Ontology” in
Conference on Object Oriented Approach in
Information Systems, Quebec, 1991.

[20] P. J. Courtois, “On Time and Space Decomposition
of Complex Structures” in Communications of the
ACM, Vol. 28, No. 6, June 1985.

[21] M. Shaw, “Toward Higher-Level Abstractions for
Software Systems” in Data & Knowledge
Engineering, North-Holland, No. 5, 1990, pp. 119-
128.

[22] P. A. Bres and J. P. Carrère, “Un Modèle de
Comportement d’Objets Naturels" in AFCET:
Autour et à l’entour de Mérise, 1991.

[23] P. Hsia and A. T. Yaung, “Another Approach to
System Decomposition: Requirements Clustering”
in Proceedings COMPSAC’88, 1988.

[24] Y. Wand and R. Weber, “An Ontological Analysis
of Some Fundamental Information Systems
Concepts” in Proceedings of the Ninth International
Conference on Information Systems, Minneapolis,
Minnesota, Nov. 30-Dec. 3, 1988.

[25] W. Kozaczynski and L. Lilien, “An Extended

Entity-Relationship (E2R) Database Specification
into the Logical Relational Design” in Proceedings
of the Sixth International Conference on Entity-
Relationship Approach, New York, Nov. 9-11, 1987.

[26] T. J. Teorey, G. Wei, D. L. Bolton and J. A. Koenig,
“ER Model Clustering as An Aid for User
Communication and Documentation in Database
Design” in Communications of the ACM, Vol. 32,
No. 8, Aug.1989.

[27] P. Desfray, “Object Oriented Structuring: An
Alternative to Hierarchical Models” in Technology
of Object-Oriented Languages and Systems, USA,
1991.

[28] T. Estier, G. Falquet, J. Guyot and M. Léonard, “Six
Spaces for Global Information Systems Design” in
Conference on Object Oriented Approach in
Information Systems, Quebec, 1991.

[29] S. P. Lee, Formalization and Automatic Support for
Conceptual Modeling. University of Paris 1
Panthéon-Sorbonne, 1994.

[30] K. Orr, C. Gane, E. Yourdon, P. P. Chen and L. L.
Constantine, “Methodology: The Experts Speak” in
The BYTE Magazine, April 1989.

[31] F. DeRemer and H. Kron, “Programming-in-the-
large versus Programming-in-the-small” in Software
Engineering, Vol. SE-2, No. 2, June 1976.

[32] D. Price, Introduction to ADA. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

[33] T. DeMarco, Structured Analysis and System
Specification. Yourdon Press, New York, 1978.

[34] G. Maksay and Y. Pigneur, "Reconciliating
Functional Decomposition, Conceptual Modelling,
Modular Design and Object Orientation for
Application Development" in Conference on Object
Oriented Approach in Information Systems, Quebec,
1991.

Abstraction in an Object-Oriented Analysis Method

63

[35] E. Yourdon, Modern Structured Analysis. Yourdon
Press/Prentice-Hall, New York, 1989.

[36] J. J. Shilling and P. F. Sweeney, “Three Steps to
Views: Extending the Object-Oriented Paradigm” in
OOPSLA ‘89 Proceedings, Oct. 1-6, 1989.

[37] B. Czejdo and D. W. Embley, “View Specification
and Manipulation for a Semantic Data Model” in
Information Systems, Vol. 16, No. 6, 1991, pp. 585-
612.

[38] Telesystems, “Analyst Workbench Tutorial” in
Esprit project 5311 (Business Class) , Feb. 1992.

BIOGRAPHY

Lee Sai Peck obtained her Master of Computer Science
from University of Malaya in 1990, her D.E.A of Computer
Science from University of Paris VI Pierre et Marie Curie
in 1991 and her Ph.D of Computer Science from University
of Paris I Panthéon-Sorbonne in 1994. She is a lecturer at
Faculty of Computer Science and Information Technology,
University of Malaya.

Colette Rolland obtained her Ph.D of Computer Science
from University of Paris I Panthéon-Sorbonne in 1971. She
is a professor at Centre de Recherche en Informatique,
University of Paris I Panthéon-Sorbonne.

Jöel Brunet obtained his D.E.A of Computer Science from
University of Paris VI Pierre et Marie Curie in 1989 and his
Ph.D of Computer Science from the same university in
1993. He is an associate professor of University of Paris I
Panthéon-Sorbonne.

