
Malaysian Journal of Computer Science, Vol. 9 No. 2, December 1996, pp. 36-42

36

A TASK-ORIENTED SOFTWARE MAINTENANCE MODEL

Md. Khaled Khan
Centre for Computing and Mathematics

Southern Cross University
P.O. Box 157 Lismore
NSW 2480 Australia

Mohammad Abdur Rashid
Computer Science Program

University of Brunei Darussalam
BSB 2028; Brunei Darussalam

email: rashid@ubd.edu.bn

Bruce W. N. Lo
Centre for Computing and Mathematics

Southern Cross University
P.O. Box 157 Lismore
NSW 2480 Australia

email: blo@scu.edu.au

ABSTRACT

Software maintenance is the only phase in the system life
cycle that does not have any firm theoretical foundation
for its practice due to the lack of precise definitions and a
maintenance model defining the tasks involved. This
paper presents a generic software maintenance model
based on various tasks. It also focuses on the
relationship between software development and the
software maintenance process in terms of software life
cycle model. This model of software maintenance
illustrates a comprehensive approach attempting to
integrate the software maintenance process with that of
software development in a single software life cycle
framework.

Keywords: Software maintenance, development
process, life cycle model.

1.0 INTRODUCTION

Software maintenance is the “modification of a software
product after delivery to correct faults, to improve
performance, or to adapt the product to a changed
environment” (ANSI/IEEE standard 729-1983).
Following Grady Booch [1], “it is maintenance when we
correct errors, it is evolution when we respond to
changing requirements, it is preservation when we
continue to use extraordinary means to keep an ancient
and decaying piece of software in operation”. Munro [2]
and Swason [3] classify software maintenance activities
into four major types: (i) Corrective maintenance, (ii)
Adaptive maintenance, (iii) Preventive maintenance, and
(iv) Perfective maintenance.

It was generally estimated that as much as 50 to 70
percent of the annual budget of DPDs (Data Processing
Departments) is being spent on software maintenance [3].
Unfortunately, there is no sound baseline in the software
engineering field on how to systematically maintain
existing software systems. More than one decade ago, it

was predicted that software maintenance would become a
problem in DPDs, and the ratio of efforts devoted to
software maintenance would increase indefinitely in the
future [4]. This is exactly the scenario we are
experiencing today.

The natural question is to ask why software maintenance
is so difficult to manage. The answer lies in various
related factors. It includes a lack of management
understanding and support; incompatible design
documents which makes the understanding of the
program code difficult; lack of proper maintenance
methodology and defined procedures. The last one is of
particular concern. The procedures followed, if any
existing software maintenance by practitioners are
generally very poor. Only very few scattered guidelines
are available for information systems managers to enable
them to tailor process models to maintenance projects. It
is well understood that a better formalism of the
maintenance process would significantly improve the
efficiency of the software maintenance activity [5]. A
more defined formalism, describing a precise relationship
between the maintenance and the development process, is
required to enable a clear understanding of the various
tasks involved in software maintenance. In this direction,
modeling the maintenance process would be the initial
requirement. Some works have already been done on
this, particularly by the Software Engineering Institute
[6]. But within the software engineering context, it has
not yet been well established how software maintenance
would relate to the software development process. To
achieve effective software maintenance, a precise
framework in software engineering should be proposed.
The framework should clearly define each phase of
software maintenance. It is important to formalise
maintenance requirements at the beginning and use them
as a basis of a realistic maintenance plan for
implementation [7].

Software development and software maintenance, the two
processes in software engineering, constitute a cycle for
the entire life span of a software system. This concept of

A Task-Oriented Software Maintenance Model

37

a software life cycle is a model used to describe and
explain software development and the maintenance
process in an engineering fashion. The top-down
waterfall model [8] has been widely accepted by the
software community while the spiral model [9] has also
received considerable attention in recent years. The latter
emphasises the risk analysis aspect of a software project,
while the former views maintenance as a single phase in
the post development chain. In contrast, this study
attempts to make a case that while software maintenance
can be regarded as a separate phase, it can also be
practised as a legitimate engineering process in its own
right at the same level as the software development cycle.
Thus, in the following section, we define a model that
treats software maintenance as a collection of well-
defined procedures aims to maintain an existing software
product. We also propose an extended software life cycle
model in which these procedures can be linked with
development in a different way from that focused in
previous models.

2.0 MAINTENANCE MODEL

The maintenance model shown in Fig. 1 defines how
various tasks in a chain are to be performed in the context
of the maintenance objectives and constraints of the
maintenance project. However, in his review of the
literature, Deraman [17] identified three major common
features of the overall software maintenance model.

These are understanding the software, modifying the
software, and revalidating the software. Our model
encompasses these features. It further shows that the
software maintenance process consists of a group of
systematic and well-defined tasks which should be
performed one after the other in sequence in order to
achieve maintenance goals. The software maintenance
process takes the existing source code, its documents, and
the modification requests as its input and produces a
“modified” system as output to meet the user’s “new”
requests. Hereafter, we shall use the term “modification”
to denote any addition, deletion, alternation or any other
maintenance actions. The phases in this model are
explained in the following sections.

2.1 Modification Requirements Analysis

In this phase, requests from users already using the
system are received. These can be anything like adding
new functions, improving the performance of existing
functions, migrating the system to other operational
platforms due to a change of hardware/operating system,
modifying the existing function due to a change of
business rules in the organisation, or correcting errors.
These requests can be analysed in detail for the existing
system in such a way that the entire modification
requirements can be well understood both by the user and
the staff who are involved in the maintenance project.
Changes may also be required to the system itself due to
the need for a new operational environment.

Fig. 1: A task-oriented software maintenance model

Program
comprehension

Design rationale
Localization Software

components
Impact analysis

Software metrics

Implementation plan
Decision

Feasibility
determination

Final plan

To implementation
phase

Modification
requirements analysis

Existing program

Design documents

Users maintenance
requests

Requirement
specification

Khan, Rashid and Lo

38

2.2 Feasibility Determination

This is a constraint mechanism in the maintenance
process. In this phase the user requirements are examined
in terms of technical and economical feasibility. Two
important issues are analysed: Is it really important and
relevant to introduce this modification to the existing
system? And if it is, how much effort will be required to
implement the change? The answers to these two
fundamental management issues will determine whether
the proposed modification will be introduced or not.
Thus cost to benefit ratio is considered as a determinant
of the modification process. The user requirements are
refined and filtered at this stage. It actually includes
estimating cost, staff, and tool availability, and quality
requirements. A feedback loop exists between this phase
and the previous one. The outcome of this phase is a
decision whether to implement all or part of the user’s
maintenance requests.

2.3 Program Comprehension or (Code X-ray)

In this phase, the complete design rationale of the system
will need to be well understood by the maintainer.
Source code level understanding is necessary to carry out
the maintenance work. In a survey on software
maintenance managers [11] it was revealed that
incompatible design documents for candidate software
are the major cause of maintenance problems for 48% of
the participating managers. If the design documents
cannot be relied on for some reasons, then the source
code alone needs to be studied for this purpose. In most
cases, there is no historical trail of how the product was
actually developed and why design and implementation
were done as they were [12]. Understanding the source
code involves code reading, program execution, and the
use of existing design documents. In such a situation, the
assistance of automatic or semi-automatic program
understanding tools like reverse engineering or re-
engineering can be sought. These tools can be a valuable
aid for understanding programs. Automatic design
recovery, or code comprehension, is sometimes referred
to as ‘code x-ray’.

2.4 Localization

In this phase, the precise location in the system where the
proposed modification to be made is identified. It is
important to trace out the exact modification area in the
source code. This phase is also referred as ‘spotting’.
The technique of program slicing or design recovery can
be applied to the candidate code for this purpose. It is
important to emphasis that, the program comprehension
phase must be done correctly and completely before one
can proceed to the localization phase. Otherwise, a
wrong candidate module may be found.

2.5 Impact Analysis

This is an important and difficult phase in software
maintenance. Without proper attention to and mastery of
the candidate system design, it would be hard to find out
how the intended modification would cause side effects in
the system, and where these would occur. The
consequences of the proposed modifications, and the
effect of the overall complexity of the system must be
examined at this stage, with reference to the candidate
system design.

2.6 Implementation Plan

In this phase, implementation of the intended
modification is planned. It includes how to update the
existing specification and design documents, and how to
re-code and configure the new and modified components
of the system. This is the final phase in the maintenance
process. When all these phases are completed the usual
development process is activated: the maintenance
process triggers the requirement analysis phase in the
development process, which entire process is split into
smaller tasks that can be developed by teams. However,
the model in Fig. 1 only shows how to prepare the
maintenance environment, and to define strategy for
software maintenance. It actually does not consider the
development of the existing software product. Ways in
which the implementation details of the maintenance
process can be carried out in conjunction with the
development process are discussed in the next section.

3.0 AN EXTENDED SOFTWARE LIFE CYCLE

The maintenance model needs to be integrated into the
entire software life cycle which will show how it can be
linked with the development process. In such a model, it
is important to show that the development environment
can support the underlying maintenance method and
activities within a software development life cycle
framework, i.e. the life cycle model must satisfy both the
development and maintenance processes. The early top-
down life cycle model fails to represent many elemental
tasks necessary for maintaining existing systems, and
gives rise to misleading concepts of software
maintenance. Software maintenance is viewed differently
now than was the case in the past and it has been stated
that a new life cycle model is needed to cope with the
maintenance problems [7, 14]. In fact, in the present
context, maintenance is seen as a continuation of the
development process that begins the moment a software
product starts its operation [15]. It has been claimed that
a significant part of software maintenance is in itself the
development of new functions [15]. However, although
many software maintenance models have been proposed
so far, most of them do not provide clear guidelines on
how to integrate maintenance into the development
process. However, if we integrate the maintenance model

A Task-Oriented Software Maintenance Model

39

in Fig. 1 with the development process, the resulted
scenario of the life cycle model is illustrated in Fig. 2.
This extended life cycle model focuses on phenomena
that occur during software building and re-building. Thus
the extended life cycle model can be used in both the
software maintenance context as well as the software
development context.

3.1 The Maintenance Context

The extended software life cycle model in Fig. 2 shows
how phases in the development process are used in
implementing maintenance decisions to the existing
system. The arrows in the model in Fig. 2 are used to
represent the direction of the process. The numbers of the
corresponding phases show the sequence of each task.

Requirements analysis: In this phase (designated number
7), the specification of the existing system is re-specified
and re-written according to the modification requests.
The results of the phase 1 modification request analysis is
added to the existing requirements specification.

Design: The re-design of the existing system reflecting
the new request occurs in this phase. The design
architecture is restructured according to the proposed
change, and all design documents are updated.

Coding : The modified design artifact is transformed into
a coded program.

Testing: This corresponds to the most crucial phase in
the entire maintenance process in which the modified
system is tested for ripple effects, existing test cases are
updated, and regression testing is performed. The post-
maintenance testing approach of the development phase
uses the following two steps [16]:

• identification of the newly added, deleted, or
modified program paths;

• re-design and re-run of the test cases which execute
the identified paths.

Here the information gained in the impact analysis phase
of the maintenance life-cycle will be useful.

Finally, configuration management and control are
essential in this phase before the modified system is
certified for installation. Operational manuals will also
need to be updated.

3.2 The Development Context

When a completely new development is to take place, the
sequence of the various phases looks like the extended
life cycle model depicted in Fig. 3. Both Fig. 2 and Fig. 3
are essentially the same in nature, the only difference
being the order in which the phases occur. The models
shown in Fig. 2 (and 1) can still be followed in tracing
reusable components in the development of a new
software product.

Fig. 2: An extended software life cycle model: the maintenance context

modifying and revalidating

requirements
analysis

8 designD
E
V
E
L
O
P
M
E
N
T 12 operation

11 installation

10 testing

9 coding

modification plan 6

impact analysis 5

localization 4

M
A
I
N
T
E
N
A
N
C
E

program comprehension 3

feasibility determination 2

modification 1

Request for modification

request analysis

7

Khan, Rashid and Lo

40

Fig. 3: An extended software life cycle model: the development context

The extended life cycle model in Fig. 2 can be interpreted
as a generic software re-engineering model. It suggests
that the re-engineering process begins with the existing
system (phase 1, Fig. 2), and produces a new form of the
old system (from phase 7 to phase 12 in Fig. 2).
Interestingly it can be noted that the extended life cycle as
presented in Fig. 3 illustrates the forward engineering
process as well. This approach can be seen as similar to
the spiral model, where the development cycle is repeated
in ever increasing spirals.

4.0 COMPARISONS WITH OTHER MAIN-
TENANCE MODELS

Before we proceed to compare our model with other
maintenance models, it is important to point out that the
“Extended Model” proposed here includes not only the
development phase, but also the maintenance phase of the
entire life cycle. It has been pointed out that [12], a well-
defined process should have the ability to blend
maintenance and development homogeneously into a
single cycle. This is the essence of our “extended” life
cycle model. It is not specific to maintenance tasks only
but may be used for development tasks as well.

Another modified software life cycle model expressing
the maintenance process integrated with software
development has been proposed by Skramstad & Khan
[17]. It shows similar steps but in a reverse time
sequence. Theater Software Maintenance Environment
(TSME) model [18] shows how the software maintenance

process can be supported and automated through the use
of an integrated software engineering environment. This
high level process model does not address how this
automated maintenance environment would be related to
the development life cycle model. Ripple effects analysis
and localization activities are not explicitly identified in
the model. This model basically concentrates on process
automation and process visibility.

A maintenance model proposed by Makoto Ino [19] is
composed of five phases. It is very similar to a model of
the development process. The five phases are: analyse
user’s maintenance requirement, design and approval,
implementation, testing, and installation. The model in
turn defines each task in these five phases , the actual
work involved of each task and their input/output data.
This model does not actually focus on how it can
eventually be related to the development life cycle.
However, the author did state that the model was not
complete.

A generic maintenance process model adopted within the
ESF/EPSOM project [20] may be seen at the first glance
similar to that proposed here. A closer examination
reveals that this is not the case. The model does not
include an important maintenance phase like ‘program
comprehension’. This model comprises 11 main
activities. These activities are grouped to form a
maintenance process specific ‘V’ life cycle. The process
is initiated with a trigger. It does not show the cyclic
order of the entire life time of a product including the
development component.

Requirements for new software

requirements
analysis

2 design

modification plan 12

impact analysis 11

localization 10

M
A
I
N
T
E
N
A
N
C
E

D
E
V
E
L
O
P
M
E
N
T

3 coding

4 testing

5 installation

6 operation

program comprehension 9

feasibility determination 8

modification 7
request analysis

1

A Task-Oriented Software Maintenance Model

41

The central part of Maintenance Assistance Capability for
Software (MACS) [21] is the understanding of the
existing application software. It covers the phases of
reverse engineering, modification management, and
ripple effect analysis. It does not address how a
maintenance process will be initiated. It does not identify
or verify the real need for maintenance of a software
product. On the other hand, the Durham Maintenance
Model (DMM) [22] is essentially a process improvement
model. This model considers managerial forecasting and
management analysis in respect of software maintenance.

5.0 CONCLUSION

Software maintenance problems are somewhat more
serious and important than they were thought to be and
acknowledged by the software engineering community.
The maintenance model and the extended life cycle
model presented in this paper provide software
organisations with a task-oriented framework on how to
control their process for developing and maintaining
software. The paper proposes that maintenance phases
are better integrated into the development life-cycle,
allowing for a fuller feedback loop. It can be effectively
applied to large or medium-sized software products, and
it requires a disciplined approach to ensure that the
maintenance process is optimised. Researchers are also
encouraged to verify the feasibility of this model in
empirical studies.

REFERENCES

[1] G. Booch, Object-Oriented Design with
Applications. Addison-Wesley, 1990, p. 5.

[2] M. Munro, “Software Maintenance, Reuse and
Reverse Engineering”, Proc. Reuse, Maintenance
and Reverse Engineering of Software: current
practice and new direction Nov. 29-Dec. 1, 1989.

[3] E. B. Swason, “The dimensions of Maintenance”,
Proc. of 2nd Int. Conf. on Software Engineering,
San Francisco, Oct. 1976.

[4] B. W. Boehm, Software Engineering Economics,
Englewood Cliff, Prentice Hall Inc. 1981, pp. 533-
553.

[5] M. Haziza, J. F. Voidrot, E. Minor, L. Pofelski and
S. Blazy, “Software Maintenance: An Analysis of
Industrial Needs and Constraints ”, IEEE Proc.
Conf. on Software Maintenance, Nov. 1992, pp.
18-26.

[6] W. S. Humphrey, Managing the Software Process,
Addision-Wesley, 1989.

[7] B. Pearson, “Procuring New Systems for
Maintenance” 4th European Software
Maintenance Workshop, Durham, U.K.,
September 1990.

[8] B. W. Boehm, “Software Engineering”, IEEE
Trans. on Computers, Vol. C-25, Dec. 1976, pp.
1226-1241.

[9] B. W. Boehm, “A Spiral Model of Software
Development and Enhancement” IEEE Computer,
May 1988, pp. 61-72.

[10] Aziz Deraman, “Requirement for a Software
maintenance Process Model: A Review”
Malaysian Journal of Computer Science, Vol. 8
No. 2, Dec. 1995. pp. 174-202.

[11] N. Chapin, “Attacking Why Maintenance is
Costly-a software engineering insight” IEEE Proc.
Software Maintenance Workshop, 1983, pp. 251-
252.

[12] B. Curtis , “Maintaining the Software Process”
IEEE proc. Conf. on Software Maintenance, 1992,
pp. 2-8.

[13] N. Chapin, “Software Maintenance Life Cycle”
IEEE proc. conf. on Software Maintenance, 1988,
pp. 6-13.

[14] H. D. Rombach, V. R. Basili, “A panel Discussion,
Position Statement”, IEEE Conf. on Software
Maintenance, 1988, p. 3.

[15] C. Wild, K. Maly and L. Liu, “Decision-Based
Software Development” J. of Software
Maintenance, Research and Practice. John Wiley
& Sons, Vol. 3, March 1991, pp. 17-43.

[16] P. Benedusi, A. Cimitile and U. de Carlini, “Post-
Maintenance Testing based on Path Change
Analysis", Proceedings of the IEEE Conference on
software Maintenance, 1988, pp. 352-361.

[17] T. Skramstad and M. K. Khan, “A Redefined
Software Life Cycle Model for Improved
Maintenance”, IEEE proc. Conf. on Software
Maintenance, 1992, pp. 193-197.

[18] R. Cherinka, C. M. Overstreet, A. Cadwell, J.
Ricci, “Issues in Software Process Automation -
From a Practical Perspective” IEEE Proc. Conf.
on Software Maintenance, 1994, pp. 109-118.

[19] M. Ino, “Current State of Software Maintenance in
Japan: In Depth View” IEEE proc. Conf. on
Software Maintenance, 1992, pp. 27- 29.

Khan, Rashid and Lo

42

[20] Del-Raj Harjani and Jean-Pierre Queille, “A
Process Model for the Maintenance of Large
Space Systems Software” IEEE proc. Conf. on
Software Maintenance, 1992, pp. 127-136.

[21] C. Desclaux and M. Ribault, “MACS:
Maintenance Assistance Capability for Software a
K.A.D.M.E.”, IEEE Proc. Conf. on Software
Maintenance, 1991, pp. 2-12.

[22] D. Hinley, and K. Benneth, “Developing a model
to manage the software maintenance process”
IEEE Proc. Conf. on Software Maintenance, 1992,
pp. 174-182.

BIOGRAPHY

Md. Khaled Khan received his B.Sc. and M.Sc. degrees
both in Computer Science from the University of
Trondheim, Norway. His current research interests
include software maintenance, reverse engineering,
conceptual modeling of software systems, CASE
technology and object-oriented design. He is a member
of IEEE Computer Society, Southern African
Mathematical Sciences Association.

Mohammad Abdur Rashid is a senior lecturer of
Computer Science at the Department of Mathematics of
the University of Brunei Darussalam. Dr. Rashid
received an M.Sc. degree in Electronics Engineering from
the Institute of Engineering Cybernetics, Faculty of
Electronics of the Technical University of Wroclaw,

Poland, in 1978 specialising in Engineering Cybernetics
Systems and a Ph.D. in 1986 from the Department of
Electronic and Electrical Engineering of the University of
Strathclyde for his research on Packet Voice
Communication on Carrier Sense Multiple Access Local
Area Networks. Between years 1979 and 1990 Dr.
Rashid worked as lecturer, assistant professor and
associate professor at the University of Dhaka,
Bangladesh. Dr. Rashid's research interests include Local
Area Networks for real time multiclass communication,
high speed networks, microprocessor based systems and
computers and society. He has published research papers
related to these areas in international journals and IEEE
sponsored conference proceedings.

Bruce W. N. Lo, B Sc (London), M Ed Stud (Newcastle)
and Ph.D. (Monash), is an Associate Professor and the
Head of the Centre for Computing and Mathematics at
Southern Cross University, NSW, Australia. Prior to that
he has taught at Universities of Wollongong and
Newcastle in Australia, and University of Guelph in
Canada. His research interests include software metrics
and cost estimation models, software tools and
development environments, intelligence information
systems, IT skills requirements and IT education, and
computer-mediated learning.

