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ABSTRACT  

In this paper, Weight Decorrelated Stacked Autoencoder-Deep Neural Decision Trees (WDSAE-DNDT), a novel 

hybrid model is proposed for automating the assessment of children’s speech fluency disorders by discerning their 

disfluencies. In fluency disorder classification, it is imperative to know how each feature contributes to the disorder 

classification rather than the diagnosis itself and so the depth modified DNDT acts as the best discriminator since it 

is interpretable by its very nature. The WDSAE presents DNDT with a high-level latent representation of the 

disfluent speech. A fusion feature vector was built by combining the prosodic cues from disfluent speech segments 

combined with the WDSAE-based Bottleneck features. The proposed hybrid model was compared with the 

performance of the experimented baseline models. Further analysis was carried out to check the impact of tree cut 

points for each feature and epochs on the accuracy of prediction of the hybrid model. The proposed hybrid model 

when trained on the fusion feature set has shown appreciable improvement in the area under the Receiver 

Operating Characteristics (ROC) curve, classification accuracy, Kappa statistical value, and Jaccard similarity 

index. The WDSAE-DNDT demonstrates high precision than the baseline models in setting clinical benchmark to 

distinguish subjects with dysphemia from those with Specific Language Impairment. 

Keywords: WDSAE-DNDT, Speech Fluency Disorder, Bottle Neck Features, Dysphemia, Specific Language 

Impairment 

1.0 INTRODUCTION 

Fluency disorder is prevalent among children during their language-learning phase, often undermined and neglected 

by parents and care-givers, which may lead to persistent speech disorders as the child grows into an adolescent. 

Also, demarcating natural childhood disfluencies due to bilingualism from stuttering disfluencies has for decades 

posed a major challenge in the diagnosis of speech impairment to the Speech and Language Pathologists (SLPs) [1]. 

Automatic assessment of fluency disorders is a difficult task as the subjects have different speaking rate, accents and 

family background. Disfluencies in speech highlight the inherent fluency disorder in the child. Dysphemia is one 

such fluency disorder characterized by stuttering where repetitions, pauses, or drawn out syllables, words, and 

phrases disrupt the smooth flow of speech [2]. It is due to acute irregularity co-ordination between the nervous 

system and the speech production system. They are symbolized by irregular breathing patterns and reflected as 

perceivable interruptions in speech utterances. There are both physiological and psychological elucidations for the 

occurrence of disfluencies [3-5]. Disfluencies in children with dysphemia are accompanied frequently by anxiety 

during communication, significant variation in breathing, hyper-tension, vocalization, articulation, rhythm, speaking 

rate and accent of speech [6] with physiological struggle in production of certain phonemes. It is also characterized 

by excessive repetition of words and a sharp hesitation to communicate. On the other hand, Specific Language 

Impairment (SLI), dominantly observed in multi-lingual children, is yet another fluency disorder that occurs during 

the (second) language-development process of a child [7]. SLI, characterized by a language delay, affects the 

reading, writing, speaking and listening skills of children during their language acquisition phase. SLI, when 

untreated, leads to learning disability in children. Children with SLI do exhibit disruptions of speech sounds which 

are manifested as repetitions, prolongations, blocks and dysrhythmic phonation patterns but the nature of 

disfluencies in dysphemic speakers subtly vary from those with SLI. It is indeed essential to demarcate SLI from 

dysphemia for early therapeutic intervention. The course of demarcation being a tedious manual process for the 

SLPs can be automized through machine learning and deep learning techniques. Estimation of speech parameters 

can assess the health of one’s voice but the precision of these parameters in discerning a specific speech disorder is 

related to competent machine learning algorithms with sharp discrimination accuracy. Fluency disorder 

classification thus involves the study of speech parameters governing the disorders and is also oriented to the 

application of efficient classification techniques. Fluency disorder predictions, though weighed to be complex, aid in 
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the prognosis of specific speech disorders [8]. Early detection of fluency disorders is inevitable in distinguishing 

dysphemia from Specific Language Impairment (SLI). In this work, both temporal and spectral prosodic features 

were estimated from the disfluent speech. Through regress experiments, it was observed that the energy, duration 

and fundamental frequency-related speech parameters are highly sensitive in distinguishing speech disorders. 

The conventional machine learning classifiers like the k-means clustering, Gaussian Mixture Model (GMM) [9], 

Support Vector Machines (SVM) [10], Decision Trees, Bayesian Classifier [11], XGBoost classifier [12], Artificial 

Neural Networks (ANNs) [13-15] have been widely used for speech disorder classification. With machine learning 

based disease predictions becoming pervasive and impacting many aspects of our day-to-day lives [16-17], the focal 

point of research has moved beyond model performance to vital factors such as interpretability [18]. The deep 

learning models with hierarchical layers, including the Long Short-Term Memory (LSTMs) were applied for speech 

disorder classification [19]. In recent times, hybrid machine learning algorithms have attracted research interests in 

speech disorder classification as they are powerful enough to surpass the conventional models in terms of accuracy 

of classification. Hierarchical training models have shown to improve performance in terms of accuracy and 

precision, for instance the Convolutional Deep Belief Networks connected with the Convolutional Neural Networks 

(CNNs) was proposed for automatic detection of voice disorders [20] while the SVM model was combined with 

Sequential Halving And Classification (SHAC) framework which apparently performed better than the Long Short-

Term Memory-Fully Convolutional Network (LSTM-FCN), a hybrid classifier in distinguishing one speech disorder 

from another [12]. The main contributions of this paper are as follows: 

 A prosody-based fluency evaluation of children was carried out to distinguish subjects with dysphemia 

from those with specific language impairment. Profound speech analysis revealed that a few prosody 

features including the measure of mean squared error of the estimated energy contour with a 1-degree 

polynomial which sharply indicated the rise and fall of energy levels in the speech utterances. Also, a 

measure of the regression coefficient between F0 contour and a linear regression line helped deciphering 

pitch deviations in children with dysphemia.  

 Weight decorrelation was introduced in the Stacked Autoencoder to facilitate better feature learning and 

dimensionality reduction. The agglomeration of the weight decorrelated stacked autoencoder with the 

DNDT model, which was depth-modified yielded the best accuracy of classification even with the available 

sparse data than the competing models in the literature and the other baseline models. 

Though the key advantage of deep learning models is automatic higher-level feature extraction, they demand hours 

of speech training data for accurate classification. Due to the unavailability of such huge on-demand data, 

alternatively, the extraction of prosodic features was given precedence as they were found significant in 

distinguishing fluency disorders. 

From this point forward, the paper is organized into five sections. In section 2, related work in the existing literature 

is highlighted. In section 3, the disfluent speech corpus and the prosodic feature extraction from disfluent speech are 

explained along with the architecture of the proposed WDSAE model for feature-dimensionality reduction. It also 

includes a comprehensive description of the proposed novel hybrid WDSAE-DNDT model with the fusion feature 

vector. Experimental results are presented in Section 4 while section 5 concludes the observations elucidating the 

prospective future work. 

 

2.0 RELATED WORK 

 

The prevailing literature holds information on the study of disfluent speech features [21-24] but very less content on 

assessment of fluency disorders using machine learning models. An early work on distinguishing childhood 

disfluencies from fluency disorders using the Artificial Neural Networks, trained on the Back-Propagation algorithm 

was carried out by [25] and hierarchical Self-Organising Map (SOMs) were introduced by [15] to classify fluent 

utterances from non-fluent utterances to diagnose speech fluency disorders. The first SOM facilitates dimensionality 

reduction of the perceptual features derived from the 1/3-octave filters, which follows classification by the second 

SOM. Being an unsupervised model, the SOM yields low classification accuracy of 76.67%. The Radial Basis 

Function (RBF) and the MLP networks [14] trained on the speech parameters such as the centre frequencies 

between 100 Hz and 10 kHz presented a competitive accuracy of 88.1% and 94.9% respectively. Yet they report that 

the RBF classifier exhibited less generalization ability in classifying unknown data. Deep Neural Network-Hidden 

Markov Model (DNN-HMM) based acoustic models [26] when trained on data as large as 175 hours of spoken 

speech yielded a reduced Word Error Rate (WER) of 21.2 % for adult fluency assessment and 12% WER for child 

fluency assessment. Bi-directional LSTM-based fluency assessment and scoring model [27] with feed forward 
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attention layer could produce a Pearson correlation of 0.602 between the machine-rated and human-rated fluency 

score to conclude on a suitable therapy for subjects detected with fluency disorders. However, the results of the 

fluency score is neither cross-validated nor a thorough statistical evaluation of the model was carried out except the 

Pearson’s correlation to prove the accuracy of the model. Recently, a deep learning framework with feed-forward 

layer and multi-head attention layer appended with audio encoding was proposed by [28] for fast-screening of 

language-based fluency disorder in children yielding an overall accuracy of 76.1%. Both Acoustic features, along 

with the transcriptional features from the Automatic Speech Recognizer (ASR) have been embedded into the 

training set of the fast-screening deep learning framework. However, the word error rate of the ASR has not been 

disclosed, which is a significant metric to understand the precision of the transcriptional features. The classifiers 

used in the existing literature, along with the language, dataset size and the performance metrics are presented in 

Table 1. 

Table 1: Classifiers in the Existing Literature 

Authors Year Classifiers Speech Features Language 
Size of the 

Dataset 

Evaluation 

Metrics 

Zhang, X., 

et. al.  [28] 
2020 

Deep learning framework 

with feed-forward layer and 

multi-head attention layer 

Initial consonant, 

Tone,  Vowel 

Syllable count, 

Speech speed, 

Pronunciation 

duration, Content 

restatement/replicat

ion, Redundant 

articles, Pause 

count 

Pause duration, The 

wrong usage of 

grammar, 

Keywords missing, 

Information 

organization 

English 
2200 audio 

samples 
Accuracy:76.1% 

Chen, L.,  

et. al. [27] 
2018 

Bidirectional Long-Short 

Term Memory 

Fluency, Rhythm, 

Intonation, Stress, 

Pronunciation, 

Grammar, 

Vocabulary Use  

English 
5488 spoken 

responses 

Pearson’s 

Coefficient:0.602 

Cheng, J. 

et. al. [26] 
2015 DNN-HMM 

Mel Frequency 

Cepstral 

Coefficients, Mel 

Scale Filter bank  

Adult English 

dataset 
175.2 hours data WER:21.2% 

Child English 

dataset 
227.2 hours data WER:14.5% 

Adult Chinese 

dataset 
168.7 hours data WER:12.0% t 

 

Świetlicka 

et al [14] 
2009 

RBF 1/3-octave filter 

bank features 
Polish speech 

dataset 

118 data samples 

 

Accuracy:88.1% 

MLP Accuracy:94.9% 

Szczurows

ka et. al. 

[15] 

2009 Kohonen networks 

Sound intensity 
levels from twenty 
one 
1/3 octave digital 
filters 

Polish speech 

dataset 

110 speech 

utterances 
Accuracy:76.67% 

Geetha et 

al. [25] 
2000 Artificial Neural Networks 

Disfluency types, 

frequency and 

duration of 

disfluencies, 

secondary 

behaviours, 

Speech rate, 

Stuttering Severity 

Index scores 

English 
Speech samples 

from 51 children 
Accuracy: 92% 
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Grounded on the existing literature, the machine learning and deep learning models do well in classifying fluency 

disorders. However, the lack of natural interpretability of each speech feature and its significance in distinguishing 

one fluency disorder from the rest is a serious drawback in these models, which mask the decision flow process at 

the outset of fluency disorder classification, where it is often more important to know how each feature contributes 

to the prediction rather than the conclusion itself. The Deep Neural Decision trees (DNDT) [29] with modified depth 

have a clear advantage in this aspect, as one can easily follow the progression of the classification course being a 

tree and know exactly how a prediction is being made.  

 

Conventional speech datasets for Specific Language Impairment and Dysphemia in the literature include the 

University College London's. Archive of Stuttered Speech (UCLASS) dataset [41] and the Laboratory of Artificial 

Neural Network Applications (LANNA) dataset [42]. The LANNA dataset contains two subgroups of recordings of 

children's speech from different types of speakers. The first subgroup (healthy) consists of recordings of children 

without speech disorders; the second subgroup (patients) consists of recordings of children with SLI. The UCLASS 

dataset is a collection of spontaneous stuttered or dysphemic speech database in English language. The UCLASS 

Release 1 dataset consists of conversational speech from 18 female subjects and 120 male subjects. In this research 

work, the proposed model was trained on the speech features extracted from disfluent speech samples from bilingual 

children.  

3.0 METHOD 

This research work aims to automate the detection of speech fluency disorders in children by proposing a Weight 

Decorrelated Stacked Autoencoder (WDSAE) conglomerated with the depth-modified Deep Neural Decision Trees. 

The WDSAE-based high-level feature extraction generates deep latent representations of the speech disfluency 

features in combination with the prosodic features from the disfluent speech corpus. The features are then presented 

to the DNDT model which in turn classifies fluency disorders with high precision and accuracy. Since the Deep 

Neural Decision Trees are interpretable, the contribution of each feature towards the classification of fluency 

disorders is intricately tracked.  

 

3.1 Speech Corpus 

 

The disfluent speech corpus for fluency disorder classification was built by collecting speech samples from 27 

bilingual children (14 boys and 13 girls), ranging in the age between 5 and 7 years with a mean and standard 

deviation of the subjects’ age being 5.7 and 0.98 respectively.  Tamil-English speaking bilingual children (subjects) 

were asked to produce spontaneous speech on a minimum of 5 topics they chose from the visual stimuli passed 

down to them. Fluent children were categorized as healthy subjects based on the recommendation of the Speech 

Language Pathologist. Based on the manual investigation and disfluency analysis on the spontaneous speech of the 

subjects by the Speech Language Pathologist, 7 subjects were diagnosed with SLI and 5 speakers were pronounced 

with dysphemia with an average age of 6 and the rest were declared healthy. Spontaneous speech samples were 

recorded for a total of 125 minutes; around 4.5 minutes per subject with one recording per subject. The sampling 

rate was set to 16 KHz. Voice samples were digitalized into a tablet for perceptual and spectral analyses of selected 

parameters. The disfluent speech segments were manually annotated using PRAAT tool [30] by following the 

annotation style of [31]. The disfluencies exhibited by the healthy, SLI and dysphemic children were annotated 

under their respective labels. A total of 944 disfluencies were annotated at the disfluency boundaries followed by 

prosodic speech feature extraction [32].  

 

3.2 Feature Extraction and Analysis 

 

Prosody-based speech features viz. energy, duration and pitch related 38 speech features as displayed in Table 2 

were extracted from the speech disfluencies to evaluate the subjects, as the prosodic features play a dominant role in 

producing fluent speech. The manual investigation and disfluency analysis on the spontaneous speech of the subjects 

were conducted using the Stuttering Severity Index–4 tool at the clinic of the Speech Language Pathologist. 
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Table 2: Prosodic Features Extracted from Disfluent Speech 

 

 

The average energy estimates the intensity of glottal excitation. The disfluent segments from the dysphemic subjects 

score high on average energy as revealed in Fig. 1(a). A total of 11 energy-related prosodic features were extracted 

Prosodic Features Description 

 

 

 

 

 

Energy-related 

Features 

Voiced_Energy_Avg Average Energy of the voiced speech segments 

Voiced_Energy_Std Standard Deviation of Energy of the voiced segments 

Voiced_Energy_Max Maximum of Energy of the voiced segments 

Voiced Rate Number of voiced segment count per second 

UnVoiced_energy_Reg Unvoiced energy Regularity 

Voiced_energy_Reg Regularity of Voiced energy 

Tilt Energy Contour Average tilt of energy contour 

Reg. Coeff. 

 

Regression coefficient between the energy contour and a 

linear regression 

Delta Energy Avg 

 

Average Delta energy within voiced segments 

Delta Energy Std 

 

Standard deviation of Delta energy within voiced 

segments 

MSE_Energy 

 

Mean square error of the reconstructed energy contour  

 

 

 

 

 

 

 

 

 

 

 

 

 

Duration-

related 

Features 

Voiced_duration_Avg Average duration of voiced speech segments 

Voiced_duration_std Standard deviation of voiced speech segments 

Pause Rate Number of pauses counts per second 

Pause_duration_Avg Average duration of pause 

Pause_duration_Std Standard deviation of the duration of pauses 

Silence Duration (Silence duration)/(Voiced duration + Unvoiced 

durations) 

Voiced_to_Unvoiced Ratio (Voiced duration)/(Unvoiced durations) 

UnVoiced duration (Unvoiced duration)/(Voiced + Unvoiced durations) 

Voiced duration (Voiced duration)/(Voiced + Unvoiced durations) 

Voiced_sil_dur Ratio (Voiced duration)/(Silence durations) 

UnVoiced_sil_dur Ratio (Unvoiced duration)/(Silence durations) 

UnVoiced_dur_reg Unvoiced duration Regularity 

Voiced_dur_reg Regularity of Voiced duration 

PauseDur_reg Regularity of Pause duration  

Duration_Voiced_max Maximum duration of voiced segments 

Duration_unVoiced_max Maximum duration of unvoiced segments 

Duration_Voiced_min Minimum duration of voiced segments 

Duration_unVoiced_min Minimum duration of unvoiced segments 

VUV Rate rate (# of voiced segments) / (# of unvoiced segments) 

Fundamental 

Frequency-

related 

Features 

F0_avg Average fundamental frequency in voiced segments 

F0_std Standard deviation of fundamental frequency in Hz 

F0_var Variability of F0 in Hz 

F0_max Maximum of the fundamental frequency in Hz 

F0_Avg_tilt Average tilt of fundamental frequency 

F0_tilt_regularity Tilt regularity of fundamental frequency 

MSE_F0 Mean square error of the reconstructed F0  

Reg_Coeff_F0_LR 

 

Regression coefficient between the F0 contour and a 

linear regression 
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including the average energy, standard deviation and maximum value of the voiced segments. The regularity of the 

voiced/unvoiced energy was measured by computing the standard deviation of energy, related to the fluctuations of 

energy from the mean energy level of the speech segments. The mean squared error of the estimated energy contour 

with a 1-degree polynomial was scored to capture the rise and fall of energy levels.  

 

The durational prosodic features give the physical interpretation of the speech signal conventionally measured from 

the pause rate, pause duration, average duration of the voiced components, rate of unvoiced components, maximum 

and minimum duration of unvoiced components and the like. The pause rate was calculated over the recurrences of 

silence intervals measured with a threshold upon the logarithmic value of energy of the consecutive speech frames. 

The rate of unvoiced segments and speech rate are vital measures that distinguish fluency disorders. The ratio of 

Voiced to Unvoiced (VUV) components was measured using the equation (1). 

 

𝑉𝑈𝑉=
𝑁𝑜.𝑜𝑓 𝑣𝑜𝑖𝑐𝑒𝑑 𝑠𝑝𝑒𝑒𝑐ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

 𝑁𝑜.𝑜𝑓 𝑢𝑛𝑣𝑜𝑖𝑐𝑒𝑑 𝑠𝑝𝑒𝑒𝑐ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
                                                                        (1) 

          
(a)                                                                  (b) 

Fig.. 1: (a) Average Energy, (b) Voiced Speech rate of Dysphemic subjects compared with the SLI and 

Healthy subjects 

The increase in the speech rate is an undermining factor of the dysphemic speech production system since the 

speech parameters at higher speaking rate demarcates the subjects with SLI and those with dysphemia as shown in 

Fig. 1(b). A total of 19 durational features were extracted for analysing the durational anomalies in different fluency 

disorders.  

The spectral features related to pitch or fundamental frequency (F0) describes the perceptual properties of the speech 

like the maximum frequency each child can reach. They also represent the intonational precedents of the subjects. 

The mean fundamental frequency was measured along with its maximum value and other functionals namely the 

standard deviation and variance. Additionally, the F0 tilt was measured, which is a measure of the tilt of pitch accent 

by perceiving the rise and fall of spectral energy in the fundamental frequency contour as given in equation (2). A 

total of 8 pitch-related features were extracted from the speech segments. 

                                                       F0  tilt =
|𝐸𝑟𝑖𝑠𝑒|−|𝐸𝑓𝑎𝑙𝑙|

|𝐸𝑟𝑖𝑠𝑒|+|𝐸𝑓𝑎𝑙𝑙|
                                                                                     (2) 

where, 𝐸𝑟𝑖𝑠𝑒  and 𝐸𝑓𝑎𝑙𝑙  indicate the rise and fall in spectral energy. Also, a measure of regression coefficient between 

the F0 contour and a linear regression line helped deciphering pitch deviations in the subjects. 

3.3 WEIGHT-DECORRELATED STACKED AUTOENCODER 

The Weight-Decorrelated Stacked Autoencoder (WDSAE) proposed as a feature compressor network, institute a 

deep learning algorithm in which a number of autoencoders are stacked one upon another with hierarchical weight 

decorrelation to realise intricate features. Autoencoder is an exceptional type of neural network architecture used to 

reconstruct the input. 
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3.3.1 Training the WDSAE 

Autoencoders when stacked in stages learn higher level features from the input data [33]. These feature 

representations are then decoded and reconstructed to display the actual data. The Autoencoder (AE) has a 

bottleneck layer with meagre neurons as the intermediate layer, forcing them to create compressed representations of 

the input that can be used by the decoder to reproduce the original input. In this work, the WDSAE architecture was 

built with three autoencoders stacked one upon another as shown in Fig. 2. The autoencoders were regularised with 

sequential 20% dropout on the neural units which introduces weight decorrelation and avoids over-fitting. Thus, the 

WDSAE learns deep features from the tempo-spectral prosodic speech parameters. 

Each AE in the WDSAE architecture was built with one input layer, one hidden layer and one output layer. The 

BottleNeck layer of the AEs was built with fewer neurons than the input layer to facilitate feature compression. The 

first AE is trained with the input prosodic feature vector and the succeeding autoencoders were trained from the 

output of the previous AE. The first autoencoder in the WDSAE has ‘n’ input units and maps the input feature 

vector x ∈ 𝑅𝑛. The reconstructed input was fed to the stacked autoencoders in tandem with sequentially reduced 

number of units facilitated by dropout. The dropout on the unit ‘m’ in the hidden layer ‘H’ is described as given in 

equation (3). 

                                                      𝑉𝑚
𝐻= 𝜃(∑ ∑ ∇𝑘

𝑙
𝑘𝑙<𝑛 (𝑊𝑡

(1)
)

𝑚𝑘
𝐼𝑘

𝑙 )                                                                       (3) 

∇𝑘
𝑙  is the selector variable for dropout following Bernoulli’s distribution;  𝐼𝑘

𝑙  being the input to the final autoencoder 

in the WDSAE architecture. The hidden latent vector ‘h’ is extracted from the BottleNeck layer ‘H’ of the last 

autoencoder with the trained encoder whose weight matrix is Wt
(1)

 and bias vector B
(1)

as given in equation (4). 

                                 h=  𝜃 ((𝑊𝑡
(1)

)
𝑚𝑘

𝐼𝑘+ B
(1)

)                                                                                  (4) 

′𝜃′ is the non-linear hyperbolic tangent activation function as defined in equation (5).   

                                                 𝜃(𝑥)=
1−𝑒−2𝑥

1+𝑒−2𝑥                                                                                                  (5) 

Then, the input vector was decoded back from the hidden vector to produce a reconstructed vector �̃� using the 

Decoder’s learned weight matrix Wt
(2)   

and bias vector B
(2)

 as given in equation (6). 

                                                  𝜃 (Wt
(2)

h+ B
(2)

)                                                                                       (6) 

 
Fig 2:  Weight-Decorrelated Stacked Autoencoder 

The learning parameters of the AE now comprises of (Wt
(1)

, Wt
(2)

 B
(1),

 , B
(2)

). 
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3.3.2 WDSAE-based Feature Reconstruction 

The goal of training the WDSAE is to keep the loss function minimum. It is measured between the input and the 

reconstructed feature vector as cited in equation (7). 

                                                           𝑎𝑟𝑔 min𝑊𝑡
1,𝑊𝑡

2,,𝐵(1),𝐵(2)[𝐿(𝑥, �̃�)]                                                                             

(7) 

The ‘Categorical Cross Entropy’ [40] defined in equation (8) is the loss function chosen for this task as it involves 

multi-class classification. 

                               𝐿(𝑥, �̃�)=
−1

𝑁
∑ ∑ 𝑥𝑖𝑘 log(�̃�𝑖𝑘) + (1 − 𝑥𝑖𝑘) log (1 − �̃�𝑖𝑘)𝑛

𝑘=1
𝑁
𝑖=1                                                     (8) 

where �̃� is the reconstructed feature vector, ‘N’ is the size of the mini-batch input vector since loss is measured on a 

mini-batch of inputs and ‘n’ is the size of the input feature vector. The weights of the autoencoders are updated by 

following the updating formulae specified in equations (9)-(12). 

                                            (𝑊𝑡
(1)

)
𝑛𝑒𝑤

= (𝑊𝑡
(1)

)
𝑜𝑙𝑑

−∝
𝜕  𝐿(𝑥,�̃�)

𝜕 𝑊
                                                                  (9) 

                                                 (𝑊𝑡
(2)

)
𝑛𝑒𝑤

= (𝑊𝑡
(2)

)
𝑜𝑙𝑑

−∝
𝜕  𝐿(𝑥,𝑥)

𝜕 𝑊
                                                                   (10) 

    

                                                     𝐵(1)
𝑛𝑒𝑤   =𝐵(1)

𝑜𝑙𝑑 
 
- ∝

𝜕  𝐿(𝑥,𝑥)

𝜕 𝐵(1)                                                                            (11) 

 

                                                     𝐵(2)
𝑛𝑒𝑤   =𝐵(2)

𝑜𝑙𝑑 
 
- ∝

𝜕  𝐿(𝑥,𝑥)

𝜕 𝐵(1)                                                                            (12) 

where, ∝ is the learning rate 

 

The partial derivatives of the loss function over the learning parameters (Wt
(1)

, Wt
(2)

 B
(1),

 B
(2)

) are detailed in the 

equations (13)-(16). 
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where, 𝑊𝑗𝑙 is the weight relating the j
th

 input and the l
th

 hidden unit; 𝐵𝑗
(1)

 being the bias of the j
th

 unit in the hidden 

layer. When the WDSAE model was able to reconstruct the actual input impeccably from the hidden vector ‘h’, 

subsequent to the training phase, the reconstruction layer of the final AE was discarded and the Bottle Neck feature 

vector ‘h’ was extracted. The feature vector, ‘h’ holds adequate knowledge on the input and is a deeper latent 

representation of the input ‘x’. Stacking the autoencoders with dropout has an agile and better minimization of the 

loss function and hierarchical training progressively extracts deeper and higher-level features from the input. The 

Adadelta optimizer [34] was used to update the weight parameters for quantitative minimization of the loss function. 

Notably, the Adadelta optimizer adopts a global dynamic learning rate with minimal computation when applied over 

the Stochastic Gradient Descent algorithm. Before training the model, the ‘max absolute scaling’ was introduced on 

the features. WDSAE was constructed using the TensorFlow library [35] using the Python 3 programming language 

that supports the distributed architecture to extract compressed Bottle Neck Features (BNFs) in an unsupervised 

fashion The BNFs can be looked upon as dimensionally reduced input features with nonlinear transformation.  

3.4 Proposed WDSAE-DNDT Model for Fluency Disorder Classification 

In the proposed deep-learning framework, the Weight Decorrelated Stacked Autoencoder (WDSAE) is integrated 

with the DNDT model to form the hybrid WDSAE-DNDT model. The whole process flow is depicted in Fig. 3. In 

this schema, the prosodic features extracted from the disfluent speech segments were primarily taken into 
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consideration, since they held the most essential cues for differentiating disfluent segments of the dysphemic 

subjects from the healthy and SLI subjects. These features were then concatenated to the latent features given by the 

WDSAE based BNFs, forming a fusion feature set comprising of both prosodic and latent information which serves 

to yield high classification accuracy as verified in section 4.0.  Following the learning phase of the WDSAE-DNDT 

model, the fluency disorder class labels were eventually acquired across each test sample. 

 

Fig. 3: Proposed WDSAE-DNDT Model 

3.4.1 Learning and Classification by the WDSAE-DNDT Model 

 

Parameter learning happens in DNDT by back-propagation using the Stochastic Gradient Descent (SGD) algorithm 

which allows synchronised parameter learning as against the conventional Greedy algorithm [36] used by the 

decision trees which involves complicated greedy splitting and was found to be sub-optimal. The DNDT 

additionally performs an inherent feature selection which was observed by running the model a number of times to 

observe the features it ignored in the trailing trials when the cut points for the specific features were removed. The 

DNDT was thus trained on mini-batches using the SGD algorithm with 2000 training epochs, measuring the cross-

entropy loss at each iteration. The Neural Net (NN) was built with four hidden layers with 50 neurons in each layer 

and a softmax activation function was arrayed at the output layer of the NN as shown in equation (17). 

                                                              𝑓(𝑥)= softmax((v x + b)/𝜏)                                                                       (17) 

where, v is a constant given by [1,2,3,…..k+1] , 𝜏  is a temperature parameter that governs the randomness of 

classification and approximates the one-hot vector; the parameter ‘b’ is defined in terms of tree cut points as shown 

in equation (18) 

                                                      b = [0, -𝛾1, −𝛾1 −  𝛾2,…., −𝛾1 − 𝛾2 -… −𝛾𝑘]                                                    (18) 

The temperature hyper-parameter was set to 0.1 to ensure the model’s sensitivity to low probable features. The 

differentiable soft binning function is thus leveraged to split the tree nodes into multiple leaves and not restricted to 

binary splits. This soft binning function takes in the feature ‘x’ and gives out the index of the bins ranging from 0 to 

‘k’, to which the feature ‘x’ belongs to. Therefore, it is essential to have ‘k’ cut points. Monotonically increasing cut 

points [𝛾1, 𝛾2, 𝛾3,…𝛾𝑘]  were used as denoted in equation (19). 

                 [𝛾1 < 𝛾2 <  𝛾3<⋯𝛾𝑘]                                                                              (19) 

The features were binned, each to a Neural Net to find the index of the leaf node from where the feature ‘x’ 

originated. Given the binning function, the decision tree was built through a Kronecker product of each feature, 

binned to its NN to discover the final nodes given by equation (20). Assuming an input feature vector, 𝑥𝜖𝑅𝑢, where 

‘u’ is the dimension of the new fusion feature vector formed by combining the prosodic features and BNFs. 

                      𝑦𝑖=f1(x1) ⊗ f2(x2)  ⊗ …. fL(xu)                                                                  (20) 

Each leaf at the final node is assumed to behave as a linear classifier that classifies the test instances into any of the 

three classes by majority voting.  
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3.4.2 Interpretability of DNDT 

 

The Deep Neural Decision Trees (DNDT) model is interpretable by its very nature, as it is a tree. Fig. 4 explains the 

intermediate branching decisions in a tree with the Gini index computed at each node. The split at each node of the 

tree is optimized by the speech dataset fed into it. The ‘value’ vector in individual nodes of the tree expresses the 

total number of observations that were categorized into that node from each of the three classification labels. With 

many features contributing in decision-making, it is imperative to resolve the significance and relevance of each of 

the features. Thus, the best relevant feature is placed at the root node which is traversed down by splitting the nodes.  

 

Fig.4: Visualization of a DNDT implemented as a conventional Decision Tree, trained on Prosodic features 

 

Down the tree, the value of uncertainty is measured which is the level of impurity stated by the Gini index given in 

equation (21).      

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 1 − ∑ (𝑝𝑗)2𝑀
𝑗=1                                                                           (21) 

It is observed that the impurity level at the branching nodes decreases and tends to a null value at the final nodes 

leading to an improved classification which implies the presence of best split at each node. The feature ‘Avg_F0’, 

which is the mean value of the pitch, was able to distinguish healthy subjects from those with Specific Language 

Impairment (SLI). A value of voiced rate less than -0.03 points to Dysphemic subjects while variability in F0 less 

than 1.14 indicates SLI. The proposed hybrid WDSAE-DNDT model for fluency disorder classification is illustrated 

by a pseudocode given under Algorithm 1. 
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 Algorithm 1:  Pseudocode for the proposed WDSAE-DNDT Model 

1: start 

2:        initialize mini-batch size N, training epochs, learning rate, number of Autoencoders ‘L’, number of  

            neurons in the hidden layers of AE m[A], input feature vector size n, the number of classes C 

3:    for each layer in the WDSAE given as A (1<A<L): 

4:         Build an Autoencoder with D input units and d  

             hidden units 

5:         if A is the first layer of WDSAE 

6:                  D=n 

7:         else 

8:                D=m[A-1] 

9:         end 

10:       Set the number of output units of the AE = D 

11:       initialize AE weights W and Biases B
(1)

, B
(2)

 to zero 

12:        for each training epoch  

13:               for each mini-batch of data 

14:               Compute Feature reconstruction: 

15:                  �̃�=𝛉(𝐖 .   𝛉(𝐖. 𝐱 + 𝐁(𝟏)) + 𝐁(𝟐)) 

16:               Compute the Loss function: 

17:                𝑳(𝐱, �̃�)=
−𝟏

𝐍
∑ ∑ 𝐱𝐢𝐤 𝐥𝐨𝐠(�̃�𝐢𝐤) + 𝟏 − 𝐱𝐢𝐤) 𝐥𝐨𝐠 (𝟏 − �̃�𝐢𝐤)𝐧

𝐤=𝟏
𝐍
𝐢=𝟏          

18:                Update AE Weights 

19:                end 

20:        end  

21:           Remove the output layer 

22:   end 

23:   append prosodic cues with Bottleneck features 

24:   initialise the Neural Net (NN) in DNDT model with  

        ‘K’ input neurons, ‘M’ hidden layers 

25:    initialise Decision Tree with ‘gini’ criterion and  

         ‘best’ splitter 

26:     for each epoch: 

27:           Build the NN with the softmax activation  

                 function:  

28:             𝒇(𝒙)= softmax((v x + b)/𝝉)    

29:            Furnish the NN with mini-batch of ‘u’  

                  dimensional fusion features 

30:            Find the final leaf nodes ‘𝒚𝒊’ through a  

                  Kronecker product of each feature binned to  

                  its NN: 

32:                          𝒚𝒊=𝐟𝟏(𝐱𝟏) ⊗ 𝐟𝟐(𝐱𝟐)  ⊗ …. 𝐟𝐋(𝐱𝒖) 

33:     end 

34:      Classify the test data into any of the C classes at the final nodes 𝒚𝒊 by majority voting 

35: end 



WDSAE-DNDT Based Speech Fluency Disorder Classification. pp., 222-242 

233 

Malaysian Journal of Computer Science, Vol. 35 (3), 2022 

3.5 Evaluation Method 

The proposed WDSAE-DNDT model was evaluated over various metrics including precision, recall, F-score, 

weighted average precision, macro-average precision, mean validation accuracy and mean test accuracy. Also, a 5-

fold cross-validation report on the performance of the proposed WDSAE-DNDT model was generated over five 

parallel sets of data to assess the best part of the data on which the proposed model performed well. 

4.0 RESULTS 

For comparison with other standard classification models, the baseline experimentation was carried out first with the 

DNDT model trained on disfluent speech prosodic features, then with the DNN and MLP.  

4.1 Comparison with DNDT model Trained on Prosodic Cues 

The stand-alone Deep Neural Decision Trees (DNDT) model [27] was trained on the prosodic feature set comprising 

of duration, energy and fundamental frequency-based speech features. The prosodic feature vector was fed directly 

to the DNDT model trained with 2000 epochs with the same feature settings, enabling the relevant feature cut points 

to observe the performance of DNDT at a learning rate of 0.1 with 256 batch size and the cross entropy being the 

loss function. The classification accuracy of the stand-alone DNDT model on the test instances was observed to be 

83% with a precision of 0.88 in detecting dysphemia and was found less accurate than the proposed model. The 

number of training epochs were varied from 1000 to 2000 in steps of 500 and maximum accuracy was obtained at 

2000 epochs. 

4.2 Comparison with DNN and MLP 

Baseline experiments were further conducted with Deep Neural Network (DNN) model using the scikit flow library 

in Python [35] and Multi-Layer Perceptron (MLP) classifier using scikit-learn library [37].  

 

A 3-class DNN classification model was built with 10 hidden layers with 20 neurons on each layer, trained on the 

prosodic speech features. It was also run on 2000 epochs with a batch size of 256 samples and a test data size of 

0.20 at a learning rate of 0.1. The cross-entropy loss function and Adam optimizer were chosen as in the previous 

models. The Rectified Linear Units (ReLU) activation function adopted for DNN showed faster convergence. At the 

output layer, the softmax activation function ensured that the summation of the activation of each unit at the output 

layer was unity, such that the output was estimated as conditional probabilities, followed by classification into 

definite classes. 

 

The MLP model with feed-forward neural network architecture was also built with 2 hidden layers with 20 neurons 

each. The MLP model was trained with prosodic features, batched with 256 samples. The optimizer, activation 

functions, train/test split ratio and epochs used in training the DNN model were emulated in the MLP model as well 

but the learning rate was altered to 0.01 as the MLP model performed well at this learning rate. Though the ‘Recall’ 

measure of the DNN and MLP models in predicting the class ‘Dysphemia’ was considerably good, they showed 

fairly low ‘Precision’ in predicting the fluency disorders which dropped their F scores compared to the proposed 

model. 

4.3 ROC - based Evaluation 

The Receiver Operating Characteristics (ROC) graph describes the relative trade-off between the rate of true 

positives and the false positives. The ROC chart is inadequate in envisaging and choosing classifiers on the basis of 

their performance. To have a comparative study of the performance of the implemented models, the ROC 

performance curve was reduced to Area Under the Curve (AUC), a single scalar measure of the mean true positive 

rate of the model over the possible false positive rates.  
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(a)                                                                                          (b) 

Fig. 5: ROC and AUC for (a) Proposed WDSAE-DNDT (b) DNDT Model 

 

 

The WDSAE-DNDT classifier with the fusion feature set (Prosodic features+ Bottle Neck Features) has the highest 

AUC of 0.96, 0.95, 0.97 for Dysphemia, SLI and Healthy classes respectively and perform well than the other 

experimental baselines. From Fig. 5(a)and 5(b), it is observed that AUC of the proposed WDSAE-DNDT model 

with an average AUC of 0.96 for all classes proves the model’s high diagnostic ability in discriminating fluency 

disorders from healthy speech. The average AUC for DNDT, DNN and MLP amounts to 0.84, 0.84, and 0.76 

respectively. Though the other models show an appreciable AUC in classifying dysphemia, they exhibit very low 

AUC for the other two classes and fail in distinguishing healthy subjects from those with SLI. 

 4.4 Precision, Recall and F-score of the Models 

For classification tasks, the terms true positive or the number of precise classifications, true negatives or the number 

of substitutions and deletions, false positives or incorrect deletions, the number of substitutions and insertions, and 

false negatives or incorrect insertions compare the results of the classifier models. Now, comparing the classifiers 

based on standard evaluation metrics, presented in Table 3. 

Let,  

Sub=Substitutions; Del= Deletions; Ins= Insertions; Cor=Correct Classification; R=Recall, P=Precision 

N=Total Number of Classification 

Then, the evaluation metrics are as given in equation (22). 

 

 Precision = 
Cor

Cor+Sub+Ins
   Recall=

Cor

Cor+Sub+Del
    

                                                                             F-score=
2∗(R∗P)

(R+P)
                                                   (22) 

 

High precision corresponds to low false positive estimate whereas Recall is an estimate of the fraction of positive 

events that are rightly predicted. It is the correlation between the accurately predicted positive events to all the 

observed outcomes in the true class. F-score represents the harmonic mean between the recall and precision values.  

F-score is highly appropriate than classification accuracy, especially in the case of uneven class distribution. F-score 

ranges between 0 and 1. A better F-score value is closer to 1. It is apparent from Table 3 that the proposed WDSAE-

DNDT model outperforms all the baseline models in predicting true positives (precision) well. Among the baselines, 

the stand-alone DNDT has a precision and recall higher compared to the DNN and MLP models while the latter 

achieve a nearly equal F-score in predicting dysphemia. In the classification of SLI and healthy samples, DNN 

exceeds in the F-score than the MLP but rests always lower than the F-score measure of the proposed model. These 

evaluation scores are presented graphically in Fig. 6 (a) and (b). 
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Table 3: Classification Accuracy 

 

 

 

 

 

 

Proposed WDSAE-DNDT DNDT DNN MLP 

Class Precisi

on 

Recall F-score Precis

ion 

Recall F-

score 

Precisio

n 

Recall F-

score 

Precisio

n 

Recal

l 

F-

score 

Dysphemia 0.99 0.98 0.99 0.88 0.98 0.93 0.85 0.97 0.91 0.85 0.95 0.90 

SLI  0.96 0.93 0.95 0.80 0.76 0.78 0.75 0.73 0.74 0.68 0.61 0.65 

Healthy  0.92 0.95 0.94 0.75 0.70 0.72 0.70 0.68 0.69 0.61 0.63 0.62 

   

    
              Fig.6: Precision, Recall and F-score for the class (a) Dysphemia (b) SLI 

 

4.5 Cross Validation of the Proposed Model 

Cross-validation strategy was used to assess the performance of the proposed WDSAE-DNDT model. The training 

feature-set was split into ‘5’ parallel sets to complete the five-fold cross-validation which is presented in Fig.7. The 

proposed WDSAE-DNDT model yields better validation accuracy sans over-fitting which is evident from the graph. 

DNN model has better validation accuracy than the rest of the baselines. 

 
Fig.7: Cross Validation of the Models 

 

4.6 Classification Accuracy and Average Precision- based Evaluation 

 

Evaluation of the machine learning models based on accuracy is an essential part of choosing the classifier. The 

classification accuracy is the correlation between the number of precise predictions to the total number of input 

samples. If Cor=Correct Classification and N=Total Number of classifications, classification accuracy is defined as 

given in equation (23). 

  

Classification Accuracy =
Cor

N
                                                               (23) 

 

The proposed WDSAE-DNDT model was validated with 20% of the training set and has superior training and test 

accuracy than the other models. Notably, the DNN shows a slight increase in validation accuracy than the DNDT 

but proves to be less accurate on the test set when compared to the DNDT model. Additionally, the weighted 
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average precision was measured as the average of the precision per class label. The macro-average precision 

amounts to the unweighted average of precisions for each class label. Macro-average which is exhaustively used for 

multi-class classification was measured for all the experimented models in this work. Since the values of weighted 

average and macro-average precisions pertain to individual classes, the scores taken for the evaluation of dysphemia 

class alone is presented in Table 4 along with the mean validation accuracy and mean test-accuracy of the models 

measured over the values taken across 75 trials of each model. 

Table 4: Evaluation Metrics 

 

The Validation accuracy and Test accuracy scores of the models are graphically described in Fig. 8(a) and (b). The 

proposed hybrid model outweighs the rest of the baselines in predicting dysphemia, demonstrated by its high macro-

average and weighted-average precision scores. 

  
(a)                                                                                        (b) 

Fig.8: (a) Validation Accuracy and (b) Test Accuracy of the models 

 

4.7 Cut-points based WDSAE-DNDT model performance 

During the learning phase of the depth-modified Deep Neural Decision Tree, it was found possible to ignore certain 

features by de-activating its cut points. This corresponds to disabling the feature, so that it does not impact 

prediction. By increasing the number of cut points for each feature, a larger model was obtained which significantly 

improved the classification accuracy as shown in Fig. .9. A minimum of 1 cut point to a maximum of 10 cut points 

were experimented in our trials. 

 Proposed WDSAE-

DNDT 

DNDT DNN MLP 

Weighted-Average Precision  0.96 0.80 0.79 0.71 

Macro-Average Precision  0.96 0.81 0.79 0.72 

Mean Validation-Accuracy 0.9312 0.81  0.82 0.74 

Mean Test-Accuracy  0.9525 0.83 0.81 0.77 
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 Fig. .9 : Accuracy of WDSAE-DNDT with increasing number of Tree cut points 

4.8 Epochs-based WDSAE-DNDT model performance 

It was observed during the validation phase that the classification accuracy of the proposed deep learning framework 

improved with the increase in number of epochs; one epoch being a complete iteration of the feature set through the 

model.  As the number of epochs increased, the number of times the weights were modified in the model increased 

and the curve rose from underfitting bend to an optimal fit. As presented in Fig. 10, the hybrid WDSAE-DNDT 

model has the highest classification test accuracy at 2000 epochs, which indicates the model’s abstinence from over-

fitting. 

 
Fig.10: Accuracy of WDSAE-DNDT model for increasing number of epochs 

 

 4.9 Statistical Evaluation of the Models 

The statistical evaluation of the models was carried out to uncover the percentage of test instances precisely 

classified by each of the models. Statistical metrics namely the Cohen’s Kappa Coefficient (κ) [38] and Jaccard 

Similarity Index (JSI) score [39] were measured for all the models. κ is essentially a correlation coefficient that 

conveys the closeness between predicted and the true labels as defined in equation (24). 

                          κ=
AL−PL

(1−PL)
; 0 < κ < 1                                                                       (24) 

where, AL: Actual Label 

PL: Predicted Label 

Table 5: Statistical Evaluation of the Models 

 Proposed 

WDSAE-DNDT 

DNDT DNN MLP 

κ 0.92 0.74 0.66 0.62 

JSI  0.90 0.71 0.70 0.65 

 

Since the Kappa Coefficient is influenced by only the instances of data which may have been rightly classified by 

the model, another statistical metric, JSI is measured for validation. The Jaccard Similarity Index score compares the 

symmetric difference to the union of the predicted and actual labels of the dataset as given in equation (25) 

𝐽𝑆𝐼(𝑃𝐿, 𝐴𝐿) =
|𝑃𝐿∩𝐴𝐿|

|𝑃𝐿 𝑈 𝐴𝐿|
; 0 < 𝐽𝑆𝐼(𝑃𝐿, 𝐴𝐿) < 1                                               (25) 
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The proposed WDSAE-DNDT model achieves the highest mean Kappa Coefficient and mean Jaccard Similarity 

Index score taken across the 75 trials as shown in Table 5. The κ and JSI scores of the models are graphically 

portrayed in Fig. 11 (a)-(b). 

  
(a)                                                                                    (b) 

Fig. 11: (a) Kappa Coefficients (b) Jaccard Similarity Index values of the Proposed and Baseline models 

In the above figures, the centre line in the box plots indicates the median value of the Kappa Coefficient; the edges 

indicating the 25
th

 and 75
th

 percentiles of the observation with the whiskers extending to mark the minimum and 

maximum values of the readings taken during the 75 trials. The baseline models comparatively display κ values 

lesser than 0.75 which mirrors the low accuracy of the models in the task of prediction. In the same way, the JSI 

score comparison between models reveal lower JSI scores among the baselines which indicate the height of 

dissimilarity between actual labels and predicted labels by the classifiers; the DNN shows an almost equal Jaccard 

score as the DNDT though the Kappa value of the DNN is lesser which apparently makes the DNDT a better stand-

alone classification model than DNN for the task of fluency disorder classification. 

4.10 Confusion Matrices of the Models 

The confusion matrix of the proposed WDSAE-DNDT model along with the other baselines are given in Figures 12 

(a)-(d). In the SAE-DNDT model, with a total of 944 test samples, 301 samples fit to the dysphemic class, 351 

samples to the SLI class and 292 Healthy samples.  

 

 
(a)                                                                    (b) 
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                                                 (c)                                                             (d) 

Figure 12: Confusion Matrix of (a) WDSAE-DNDT (b) DNDT (c) DNN (d) MLP 

The proposed hybrid model could classify 279 dysphemic samples, 337 SLI samples and 279 healthy samples 

yielding an overall average accuracy of 95%. Owing to the common fixation of the hyper-parameter ‘random_state’ 

to be equal to 1 in all the models for a random split in samples from different classes, the number of samples under 

each class in the train/validation/test set subtly varies in the confusion matrices of all the evaluated models but in 

every model, the total number of test samples amount to 944 as cited above.  

The proposed hybrid model, Weight Decorrelated Stacked Autoencoder-DNDT (WDSAE-DNDT), yielded the best 

accuracy of classification even with the available sparse data than the competing models in the literature and the 

other baseline models. Also, the proposed WDSAE-DNDT exhibited higher Precision, Jaccard score, Kappa 

coefficient, Recall, F-score and the better confusion matrix than the conventional models. Weight decorrelation 

introduced in the proposed model facilitated better feature learning and dimensionality reduction. Also, the 

WDSAE-DNDT performed well when trained on the available sparse data by automatic higher-level feature 

extraction from the input to distinguish one fluency disorder from the other for accurate classification. Thus, 

WDSAE-DNDT is proposed for fluency disorder classification. 

5.0 CONCLUSION 

In this paper, Weight Decorrelated Stacked Autoencoder-Deep Neural Decision Tree, a novel hybrid deep learning 

framework was proposed for fluency disorder classification to distinguish Specific Language Impairment from 

Dysphemia and to present clinical benchmarks that can help Clinicians evaluate their therapy decisions. The weight 

decorrelation introduced in the Stacked Autoencoder and the enhanced hidden layer depth of the modified DNDT 

significantly contributed in improving the prediction accuracy of the proposed WDSAE-DNDT model which yields 

the best average prediction accuracy of 95% when trained on the available sparse data and is shown to perform well 

with the increase in the number of epochs and tree cut points. The key findings of this work by profound speech 

analysis are the inference on a few prosodic features viz. the mean squared error of the estimated energy contour 

with one-degree polynomial, the regression coefficient between the F0 contour and a linear regression along with 

the fundamental frequency and its variant measures such the average, variance and standard deviation of pitch, the 

average, maximum and standard deviation of spectral energy, the voiced rate that greatly contributed to distinguish 

speech fluency disorders.  

In future, the authors wish to take forward the fluency disorder classification task to the early diagnosis of the onset 

of cognitive diseases such as the Alzheimer’s disease and Parkinson’s disease in adults based on the disfluent speech 

patterns of the patients using robust and accurate deep learning algorithms. 
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