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ABSTRACT 

Frequent boiler tube trips in coal fired power plants can increase operating cost significantly. An early detection and 
diagnosis of boiler trips is essential for continuous safe operations in the plant. Several methodologies for the fault 
diagnosis in a plant have been developed. However these methodologies are difficult to be implemented. In this study, two 
artificial intelligent monitoring systems specialized in boiler trips have been proposed. The first intelligent monitoring 
system represents the use of pure artificial neural network system whereas the second intelligent monitoring system 
represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. In the first system 
using pure artificial neural network, the trip was predicted 5 minutes before the actual trip occurrence. The hybrid 
intelligent system was able to optimize the selection of the most influencing variables successfully and predict the trip 2 
minutes before the actual trip. The first intelligent system performed better than the second one based on the prediction 
time. The proposed artificial intelligent system could be adopted on-line as a reliable controller of the thermal power plant 
boiler. 
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1.0 INTRODUCTION 

A typical power plant consists of the boiler, condensers, heaters, turbines, and various components that work together 
continuously, producing energy. Steam boilers represent the main equipment in the power plant. Boiler tubes 
continuously pass fluids while withstanding extremely high temperatures and pressures of the steam generator [1]. 
This eventually leads to cracks in boiler tubes. A small leak from a particular tube causes erosion to other surrounding 
tubes as well causing serious secondary damages.  A boiler tube leak can also be caused by one of the following reasons: 
caustic attack, oxygen pitting, hydrogen damage, acid attack, stress corrosion, waterside corrosion, super heater fireside 
ash corrosion, short-term overheat, long-term overheat, graphitization, and dissimilar metal weld [2]. Malfunction of boiler 
tube causes frequent boiler trips which eventually increase the operating costs of a plant [3]. A tube leakage causes 
abnormal changes in the values of the related boiler parameters. As the leakage continues certain related boiler parameters 
such as feed water flow rate, super heater steam temperature, economizer inlet pressure and drum leveldeviates from its 
normal range. Once the sensors detect that a number of influential boiler parameters has exceeded or has reduced from the 
acceptable range, a trip occurs where the particular system isolates itself from others. The time taken for repair can be 
significantly long as it involves shutting down the whole operating system, allowing the boiler to cool down, identifying 
the cause of the tube leak and also the replacement and welding of the tubes. The cost due to damage caused by a serious 
tube leak could go up to an average of $6 million per leak [4-5]. Eventually, by the time the replacements are carried out, 
the plant would have undergone a big financial loss.  

Conventional detection methods of detecting tube leaks by measuring the make-up water or inspecting is ineffective as it 
gives information on the existing tube leak only when serious damage has already occurs. Lang et al. [5] developed an on-
line method which detects steam generator and heat exchanger tube leaks occurs using the Tube Failure Model. It was 
concluded that tube leakage represents a major source of unrecognized heat rate degradation. The results show that the 
impact of tube leakages approximately decreases the boiler efficiency by 0.7% for every 40,000 lbm/hr leakage flow. 
Therefore, preventing tube leakages through early detection could eventually improve the overall plant efficiency. 
Consequently, prediction of boiler tube leak trips is crucial to maintain normal and safe operational conditions of the plant 
[6], so that the operator can be warned earlier before the trip actually occurs and preventive measures can be taken to avoid 
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further damage and an eventual shutdown. Benefits of an early detection of boiler tube leak trip are: to increase operating 
profit by reducing repair costs and secondary damage, increase safety of the plant, increase availability and tube life, and 
avoid unplanned outages [7]. 
 
Prediction can be achieved by developing intelligent monitoring system which monitors the operating conditions. Using 
information provided by measurements from several sensors and actuators that are abundantly stored throughout 
operations, the intelligent monitoring system is able to predict a failure [8]. The system stores the real data of previous 
faults and will notify the operator when it detects operating conditions which indicate that a trip will occur. The resources 
for these real data of any operating plant are readily available. From over thousands of available measurements, the scope 
can be reduced to working fluid components in the boiler in which only variables that have high influence on boiler 
operations are taken into account. They include values of the temperatures, pressures, flow and levels of boiler components 
including the economizers, drums, headers, circulating water pumps, risers and super heaters. 

 
One of the most commonly used intelligent systems for early fault detection is the Artificial Neural Network. Messai et 
al. [9] have applied the ANN for on-line fault prediction of fuel rod temperature measurement sensor in a nuclear core. 
This study highlighted that ANN is preferable over other intelligent systems because it does not require derivation of the 
mathematical model of the process.  
 
Muhammad and Halim [10] proposed a predictive ANN model for visualization techniques’ classification. The 
performance of the proposed ANN model been compared with five other classifiers such as k-nearest neighbor, naïve 
Bayes, decision tree, random forest, and support vector machine. The ANN-based prediction model of automated 
visualization selection outperformed other classifiers in terms of accuracy and execution time. 
 
Halim et al. [11] developed a predictive ANN-SVM model for driver’s profile classification. The trained classifier driving 
features were proposed as model inputs. The training process was based on clustered data. Comparison between these 
clusters were performed which showed that the various data sets with different combinations of attributes provided 
approximately the same number of clusters. 
 
ANNs are designed in layers that include input, output, and hidden layers. Based on a review study on on-line condition 
monitoring system for high level trip water in steam boilers drum, the researcher has used only one-hidden layer (1HL) 
ANN structure for fault prediction and diagnosis [12]. However, in another study on pure artificial intelligence monitoring 
system for coal-fired power plant boiler drum high water level trip, both one hidden layer and two hidden layers cases 
were tested and compared in which the optimum NN structure with two hidden layers outperformed the one hidden layer 
structure [13].  Kumar et.al [14] have applied ANN for the prediction of refuse plastic boiler performance. The ANN 
topologies taken into account to achieve an optimal architecture include the training algorithms, activation functions, 
number of inputs nodes, hidden layers, hidden nodes, and output nodes. The best network architecture achieved for 
optimization of the plant operation consisted of 4-12-3 (input-hidden-output) neurons, training count of 50,000, learning 
rate of 0.1, and momentum coefficient of 0.1. Another study on ANN had adopted the methodology of feed forward back 
propagation to diagnose a steam boiler based on super heater monitoring, in which the minimisation algorithms were 
applied [15]. Feed forward networks are faster compared to feedback networks due to the inexistence of repeated loops. 
Rostek et al.  [16] presented an early detection of leaks in fluidized-bed boilers using ANN. It was verified in the study 
that the performance of ANN using multi-layer perceptron (MLP) was better than radial basis function (RBF) neural 
network as a detection and prediction tool. In an application of ANN for the prediction of high efficiency boiler steam 
generation and distribution, the root mean square error was used as a performance indicator for the intelligent system 
where the mean square error identified the weights that minimises the error [17]. 
 
ANN as a stand-alone system is effective. However, there are several other intelligent systems that have been applied 
together with ANN for early fault detection. Genetic algorithm is an optimization tool which reduces the possibilities of 
getting into local minimum in the process of finding an optimum solution [18]. A patented invention by Lang and Rafael 
[19] involved rapid detection of tube failures and their locations without using direct instrumentation in order to prevent 
serious damage and minimize the repair time of the affected heat exchanger. This method is applicable to Input/Loss 
method of monitoring fossil-fired thermal plants.  
 
Momeni et al. [20] applied hybrid genetic algorithm-based ANN for the prediction of pile bearing capacity. From this 
study, it was concluded that using the optimum Genetic Algorithm (GA) parameters, the hybrid model outperformed the 
conventional ANN model in the prediction process. Genetic algorithm was applied successfully together with ANN as a 
hybrid system for prediction of flow characteristic in serpentine micro channels. The best network configuration was 
evaluated using trial and error of different combinations of ANN topologies [21]. Researchers in the past have shown that 
the GA is an efficient tool in optimization of the selection of variables for various applications [22-24]. A study on the 
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ANN-GA smart appliance scheduling for optimised energy management in the domestic sector highlighted that 
implementation of GA significantly reduced the computational time of the whole process [25]. Majid et al. proposed a 
hybrid system for a real wastewater treatment plant which optimised weights and thresholds of the multi-layer perceptron 
neural network and radial basis function neural network [26]. Hajnayeb et al. [27] compared the ANN- based feature 
selection with the genetic algorithm for gearbox fault diagnosis. In this application, new generation of chromosomes is 
created using previous generation by implementing the selection, crossover and mutation methods. 
 
Halim et al. [28] used evolutionary algorithm (EA) to cluster large probabilistic graphs in order to achieve better results. 
The proposed approach was compared with two baseline clustering algorithms and two state-of-the-art approaches for 
uncertain /probabilistic data. The EA based approach showed better performance. Optimum clustering was achieved by 
having local and global search by enabling the EA. The EA was able to have local and global search capability due to its 
multiple populations.  
 
Halim and Uzma [29] state that the majority of the research performed on Minimum Spanning Tree-based clustering 
(MST) focused on forming better cluster formations by partitioning the MST. Therefore, they optimized the MST-based 
clusters using Evolution Strategy (ES).  The proposed work differs from previous approaches as it is not based on any 
assumption about the underlying data. It was concluded that the proposed solution performed better compared to other 
clustering approaches.  
 
Halim and Muhammad [30] proposed a set of visualization metrics in order to evaluate visualization techniques. The EA 
framework which uses tree-maps as a case study was applied. The optimum visualization layout was achieved using the 
genetic operators and the proposed visualization metrics as an objective function. These evolved visualizations were 
compared with a randomly created visualization and visualization created using a state-of-the-art treemap visualization 
tool. The comparison was made using internal and external evaluation metrics. The visualization evolved using the 
combined fitness function was more effective than the visualizations optimized for effectiveness, expressiveness, 
readability, and interactivity in isolation. 
 
From all of the existing solutions, there has not been any intelligent monitoring system established particularly for 
boiler tube leak trip in thermal power plants. Therefore, it is important to develop a reliable intelligent monitoring 
system for prediction of boiler tube leak trip. Several researches used mathematically simulated data instead of real 
plant data for training and validation, which is inaccurate for decision making. It can be noted from previous 
applications that the raw data are used directly for the training process. However, the data are not always complete 
and the quality is not acceptable. Therefore, a data preparation framework is important for the complex data analysis. 
Previously, trial and error approach has been applied for the selection of best NN topology combination and the 
optimization of the boiler operation parameters.  The selection of suitable boiler operation variables and the design of 
the optimal neural network topology can be achieved using additional artificial intelligent system technique such as GA. 
Based on previous researchers, no direct comparison of performance between a pure intelligent monitoring system 
(ANN) and a hybrid intelligent monitoring system (GA+ANN) for boiler tube leak trip was made. This is important 
to understand the prediction capability of both systems in predicting a boiler tube leak trip. 
 
Therefore, the objective of this research is to develop two IMSs for boiler trip prediction by adopting pure artificial 
neural network system and hybrid intelligent system. The first intelligent monitoring system represent the use of the 
pure artificial neural network system for boiler trip prediction. The final architecture for this system was explored after 
investigation of various neural network topology combinations which include two hidden layers, one to ten neurons for 
each hidden layer, three types of activation function, and four types of multidimensional minimization training algorithms. 
The second intelligent condition monitoring system is a hybrid intelligent system using the application of artificial neural 
networks with genetic algorithms. To ease the selection of suitable boiler operation variables and to achieve the optimal 
neural network topology, encoding and optimization process is performed using genetic algorithms. The main objective 
of developing the two IMSs, is to determine if the pure system is able to successfully predict a trip and if a hybrid 
system is able to enhance the capability of the pure system in predicting a trip. Each design process of the intelligent 
monitoring system goes through preliminary and basic training and validation processes, in which the data is segmented 
to 60% for training and 40% for validation. The performances of these systems are measured using Root Mean Square 
Error (RMSE), where output error between the actual output and the expected output is evaluated. It is noted that 
lower error value indicates better performance. The comparison of the IMSs from this study allows us to understand 
the capability and performance of each system particularly in predicting a boiler tube leak trip. The feed-forward neural 
network methodology has been adopted as a major computational intelligent tool in both the systems. Real operational 
data of a particular boiler tube leak trip obtained from a coal-fired power plant was used in this study.  
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2.0 DESCRIPTION OF POWER PLANT 
 
In this research, the power plant being considered consists of three sub-critical pressure boilers. Each boiler is a single 
reheat and controlled circulation type. The boiler is fired with pulverized coal to produce steam for the continuous 
generation of 700 MW(e).  The combustion system consists of a single furnace with balanced draught. Using direct 
tangential firing located in the furnace corners, the maximum heat input that can be attained is 40% of the Boiler 
Maximum Continuous Rate (BMCR). Complying with the Malaysian environmental requirements, the plant consists 
of low nitrogen oxide combustion burner system such as the Over Fire Air (OFA) ports. The sulphur dioxide emission is 
controlled through the Flue Gas Desulphurisation (FGD) plant and the dust in the flue gas at the boiler outlet is removed 
by an Electro-Static Precipitator (ESP). Remote controlled fuel oil burners with high energy ignitions are used to start-up 
the boiler. Pulverized coal is able to undergo combustion at low firing rates using these burners. Apart from three boiler 
circulating pumps, the main auxiliary equipment includes two forced draft fans, two induced draft fans and two 
primary air fans which are centrifugal fans with control vanes at the inlet. Other components of the auxiliary 
equipment include two steam air pre heaters, one piece of soot-blowing equipment, two electrostatic precipitators. 
The boiler has 7 vertical bowl mills) in one coal milling plant. Fig. 1 shows the schematic diagram of the boiler 
system. 

 
 

Fig. 1: Schematic diagram of MNJ TPP Boiler. 
 

3.0 DATA PREPARATION FRAMEWORK 
 
The current work includes four related execution phases which are represented in Fig.2. These phases are sequential 
steps that are identified to execute the entire study.  
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Fig. 2: Execution phases 
 
The first phase was the integrated data preparation which was further divided into three stages as shown in Fig.3. The 
data preparation stage involved steps which include mathematical and statistical processes. 
 

 

Fig. 3: Plant Data Preparation Stage 
 
3.1 Data Pre-Analysis Stage 
 
This stage of the execution phases focussed on the identification of boiler operational variables and the acquisition of 
plant data for a specific boiler trip.  
 
3.1.1 Plant Data Identification Step 
 
The on-line plant control system consists of over 1,800 observations of actuators and sensor signals which were 
identified as the boiler process observations. This large number of observation was reduced to 177 based on the work 
scope, which focuses on the diagnosis of working fluid components only in the boiler. This includes relevant 
measurement values of operational variables related to headers, economisers, circulating water pumps, risers, drums 
and super heaters. The work scope excluded observations of furnace items, induce fans and mills. Plant operator 
experience was taken into account to identify observations that do not affect boiler trips. These non-effective factors 
were neglected and the observations were reduced to 93. Many observations were measured by multi-sensors thus, 
eventually thirty-two influential operation boiler variables were identified and tabulated in Table 1. The average 
number of signals retrieved for each variable was represented by the ‘criteria’ column in Table 1. Once the operation 
boiler variables are identified, the data are acquired as described in the following section. 
 
 
 
 
 
 
 

•Plant Data PreparationPhase I

•Development of IMS-I using ANN (Training & 
validation)Phase II

•Development of IMS-II using ANN an GA (Training 
& validation)

Phase III

• Advisory guidePhase IV
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Table 1: Influential boiler operation variables 
 

Code Variables Unit Criteria High Alarm 
(minute) 

V1 Total combined Steam flow t/h = 1/1�𝑉𝑉11

1

1

 705 

V2 Feed water flow t/h = 1/1�𝑉𝑉21

1

1

 704 

V3 Boiler drum pressure Barg = 1/1�𝑉𝑉34

4

1

 704 

V4 Superheater steam pressure Barg = 1/1�𝑉𝑉41

1

1

 704 

V5 Superheater steam temperature °C = 1/1�𝑉𝑉51

1

1

 2471 

V6 High temperature Re-heater outlet 
temperature °C = 1/4�𝑉𝑉44

4

1

 963 

V7 High temperature superheater exchange 
metal temperature °C = 1/4�𝑉𝑉74

4

1

 - 

V8 Intermediate temperature (A) superheater 
exchange metal temperature °C = 1/4�𝑉𝑉84

4

1

 2472 

V9 High temperature superheater inlet header 
metal temperature °C = 1/4�𝑉𝑉94

4

1

 2471 

V10 Final superheater outlet temperature °C = 1/6�𝑉𝑉106

6

1

 - 

V11 Superheater steam pressure transmitter 
(control) bar = 1/7�𝑉𝑉117

7

1

 2471 

V12 Feed water valve station t/h = 1/8�𝑉𝑉128

8

1

 704 

V13 Feed water control valve position % = 1/4�𝑉𝑉134

4

1

 704 

V14 Drum level corrected (control) mm = 1/1�𝑉𝑉141

1

1

 2214 

V15 Drum level compensated (from 
protection) mm = 1/1�𝑉𝑉151

1

1

 704 

V16 Feed water flow transmitter % = 1/1�𝑉𝑉161

1

1

 - 

V17 Boiler circulation pump1 pressure bar = 1/1�𝑉𝑉171

1

1

 2031 

V18 Boiler circulation pump 2 pressure bar = 1/2�𝑉𝑉182

2

1

 1959 

V19 Low temperature super heater left wall 
outlet before super heater dryer °C = 1/4�𝑉𝑉194

4

1

 704 

V20 Low temperature superheater right wall 
outlet before super heater dryer °C = 1/2�𝑉𝑉202

2

1

 2612 

V21 Low temperature super heater left wall 
after super heater dryer °C = 1/2�𝑉𝑉212

2

1

 958 

V22 Low temperature super heater right wall 
exchange metal temperature °C = 1/1�𝑉𝑉221

1

1

 2474 

V23 Intermediate temperature (B) super heater 
exchange metal temperature °C = 1/1�𝑉𝑉231

1

1

 1948 

V24 Intermediate temperature super heater 
outlet before super heater dryer °C = 1/1�𝑉𝑉241

1

1

 1944 

V25 Intermediate temperature super heater 
outlet header metal temperature °C = 1/2�𝑉𝑉252

2

1

 2007 

V26 High temperature super heater outlet 
header metal temperature °C = 1/6�𝑉𝑉266

6

1

 2480 

V27 High temperature Re-heater outlet steam 
pressure bar = 1/2�𝑉𝑉272

2

1

 2477 

V28 Superheated steam from intermediate 
temperatures outlet pressure bar = 1/11�𝑉𝑉2811

11

1

 - 
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V29 Super heater water injection compensated 
flow ton/hr = 1/10�𝑉𝑉2910

10

1

 2479 

V30 Economizer inlet Pressure bar = 1/6�𝑉𝑉306

6

1

 961 

V31 Economizer inlet temperature °C = 1/1�𝑉𝑉311

1

1

 - 

V32 Economizer outlet temperature °C = 1/1�𝑉𝑉321

1

1

 - 
 
3.1.2 Plant data acquisition phase 
 
The data of the boiler operation variables, which were identified in the previous phase were captured based on groups. 
There are two groups of data captured from the boiler, in which group A is based on the outage intervals for a particular 
trip, and group B represents normal boiler operation. These groups were compared to determine the difference in 
parameters of the variables before and during a trip. The sampling time of one minute was used because short sampling 
time allows for precise training and validation results. The shutdown period determines the intervals in between the 
trip data. Trip data duration was 24 hours before and after the trip if the shutdown lasts more than 24 hours.  In this 
case the boiler water wall tube leak trip lasted for 5 days. The acquired data then goes through the data pre-processing 
stage. 
 
3.2 Data Pre-Processing Stage 
 
After identifying and acquiring the data in the pre-analysis stage, the data goes through data pre-processing stage. The 
large data collected from the power plant containing thousands of values was filtered and passed through three 
important steps. They are visual cleaning of data, missing data treatment, and data normalisation. 
 
A large spreadsheet of data has several errors in the form of noise values, which is identified visually through the 
process of visual cleaning.  Missing data treatment involves an automated graphical tool which is used to remove 
duplicate records caused by variations of the same erroneous listing. In a large set of data, default values are usually 
assigned to missing data which forms non-numeric errors. A MATLAB code is used as a data analysis tool to input 
the valid range of values. The number of values for a numeric record was reduced using data smoothing which include 
the rounding technique and the mean values computing technique. Mean value smoothing was applied when a 
classifier does not support numerical data. A typical data point was located and removed from the set of data using 
outlier’s removal smoothing. The removal tool used was MATLAB code with 95%confident level. Lost information 
in the form of missing data can be solved by discarding the missing values records. These missing data is also 
replaceable with real data using class mean.  Missing data treatment also include the application of mathematical 
forecasting methods such as extrapolation and interpolation. Other similar condition values can also be used to replace 
the missing values. 
 
A better IMS performance is observed using scaled data compared to non-scaled data. Therefore, data normalisation 
is used as the data transformation technique to scale the data between 0 and 1 (0 represents running mode and 1 
represents faulty). Since the minimum and maximum values are known, the Min-Max data normalisation is applied 
using the following equation 1. 
  
   
                                                                                                                                                                                     (1) 
 
 
3.3  Data Post Analysis 
 
This stage involved the behavioural study of boiler operational variables, data segmentation into two sets: sub group 
A and sub group B, and establishment of NN targets. Using the data from group B, which represents the normal 
operational conditions without a trip, mean value for each variable was determined. To achieve the desired ANN input 
range of [0, 1], the Min-Max data normalisation transformation was used to transform the mean values for normal 
and faulty boiler operation to normalised mean values. Data from group A involving a trip was used to investigate 
behaviour of each variable. Understanding the behaviour of the variables is essential in the analysis of the IMS. 
 
For each variable, the time interval to reach high alarm indicator “1” was illustrated in the “High Alarm” column of 
Table 1. From the 32 variables, the low temperature super heater left wall outlet variable (V20) was selected as the 
most effective variable. This is because V20 reached the high alarm indicator at the 2612th minute, which is closest 

oldold

old

Min -Max
Min- valueOriginal

=valueNew



Adoption of Intelligent Computational Techniques for Steam Boilers Tube Leak Trip, pp. 133-151 
 

140 
Malaysian Journal of Computer Science. Vol. 33(2), 2020 

to the shutdown time of 2614th minute. The rest of the effective variables (V5, V8, V9, V11, V14, V17, V18, V22, 
V23, V24, V25, V26, V27, and V29) were also chosen based on the time interval to reach high alarm indicator.In the 
training and validation process, only data before the unit shutdown was used. The ANN training was done in two phases: 
the preliminary training phase and the basic training phase. Data sub group A was divided into 70% for preliminary training 
and 30%for preliminary validation, whereas data sub group B was divided into 70% for basic training and 30% for basic 
validation. 
 
The target matrix can be established using the results from the high alarm occurrence table. The fault introduced matrix 
indicates the time at which each influencing variable reached its maximum value i.e. reaching “1”. The method of the 
target matrix establishment was repeated by assuming the faulty data with ±5, ±10, ±15, ±20 and ±25 minutes. The analysis 
showed that the ±20 minutes provided optimum training performance for the ANN system, unlike the ±25 minutes which 
is negligible because the steady state convergence was achieved. The fault target interval was decided to be within 20 
minutes before reaching 1 and 20 minutes after reaching “1”. Therefore, all other values are “0” when normalized and 
were considered non-faulty values. Thus targets of the trip are assigned in the newly established matrix which was later 
used for the ANN training process. 
 
4.0 DESIGN AND IMPLEMENTATION OF IMSS 
 
In this study, the feed-forward methodology was adopted using the back-propagation neural network. Activation 
functions are applied to the weighted sum of its input. The main NN topologies are training algorithms, learning rate, 
momentum coefficient, activation functions, number of hidden layers, and the number of neurons in each hidden layers. 
In this study, up to 2 hidden layers were used. An ANN architecture of one hidden layer (1HL) is able to approximate 
arbitrarily with any system that contains continuous mapping from one finite space to another. However, ANN architecture 
containing two hidden layers (2HL) can represent a decision boundary with arbitrary accuracy. RMSE indicator was used 
to investigate the structured IMS-I performance. Based on the best performance of the IMS-I, training and validation is 
done. The thirty two variables presented before were used as inputs in this IMS-I and the outputs are either “0” which 
represents normal boiler situation or “1” which represents an abnormal boiler situation. 
 
4.1.1 Preliminary Training 
 
The main objective of this preliminary training is to determine the optimal NN topology combination. The IMS-I was 
input with faulty data set which represents 70% of sub-group A data. The network input includes all thirty-two operation 
variables. Fig. 4 shows the data segmentation sub groups for training and validation. 

 

 
 

Fig. 4: Data segmentation sub groups for training and validation 
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4.1.2 Basic Training 
 
The optimal topology combination obtained from the preliminary training results was used for the basic training. Real 
boiler data set which represents 70% of sub-group B data were presented as the basic training sets for the IMS-I. Based 
on the proposed system performance indicator, the basic training results were analysed. The calculated RMSE values of 
the optimal NN topology combination were compared with the RMSE value of the preliminary training process. The aim 
of this process is to get smaller or equal calculated RMSE values than the preliminary training process. 
 
4.1.3 Preliminary Validation 
 
In the preliminary validation process, the remaining 30% of sub-group A data set was used as a validation real data 
set. Applying the optimal NN topology combination obtained from the preliminary training process, validation of real 
data set was used to determine the rapidness of the proposed IMS-I in predicting the specific trip. The performance 
of the system during normal boiler operation was also validated 
 
4.1.4 Basic Validation 
 
In the basic validation process, the remaining 30% of sub group B data set was used. Another set representing normal 
boiler operational data was also used in this validation.  The performance of the proposed system was examined using 
the obtained results in which the capability of the proposed IMS-I for the specific trip was explored. Fig. 5 shows the 
proposed IMS-I code execution flow which were used for the training and validation of the system. 
 

 

Fig. 5: Execution flow chart of the proposed IMS-I code 
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4.2 Design of IMS-II (ANN + Hybrid) 
 
In the development of IMS-II, GA was used for automated design and NN parameter optimization. The IMS-II scheme 
was developed based on GA encoding. 
 
4.2.1 GA Encoding 
 
In this study, NN topologies were considered as the phenotype for the GA application. The NN topologies were encoded 
together with the NN training parameters into the genes of the GA using Weak Specification Representation (WSR). The 
proposed GA individual has genotypes which represent every phenotype of ANN topologies together with training 
parameters. The topologies proposed in this study are NN structure, activation function, back-propagation algorithms, and 
all the boiler operation variables. 
 
The search space was reduced significantly using the WSR scheme, which is applied for multidimensional minimization 
algorithm selection, the ANN structure, the optimal ANN input parameters selection and the selection of activation types 
for the hidden nodes and the output nodes. GA considered all the four multidimensional minimization training algorithms 
and they are represented by two binary entries, thus forming the first two bits of binary string representation. 
 
The WSR of ANN structure consists of seven binary entries of the string, which represents up to 91 viable ANN structures. 
WSR of the activation function take into account the three activation functions, which provides nine different combinations 
for one hidden layer and 27 combinations for two hidden layers. These combinations were included in the genetic 
representation and were encoded with 5 final binary entries in the bit string. All thirty two variables that were encoded 
with binary string formed the final thirty two bits of string. The equation below was used to calculate the combinations 
probability. 

      
     (2) 
 

4.2.2 IMS-II Scheme 
 
The IMS-II scheme for optimal NN topology combinations and boiler operation variables selection can be divided into 
three major elements as shown in Fig. 6. They are the user element, the genetic algorithm optimization element and the 
ANN training element. I/O processes are handled by the user element. The optimization process includes numerous sub-
sections interacting with each other and with the user part to complete the desired procedure. 
 

n
vc 2=P
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Fig. 6: Schematic representation of proposed IMS-II 
 
At the first element, the user provides, the ANN training set (Ts), the parameters set for BBP training algorithms (BPs), 
the number of generations of the GA (Gn), the size of population of the GA (Pz), the probabilities of crossover of the GA 
(Pc), and the mutation probability of the GA (Pm). Every initial population of several binary strings represents a specific 
network topology and the NN training parameters set. This initial population is represented by the (Xint) in Fig.6. Every 
user inputs are then passed to the main optimization part. 
 
“GA decoding” as the internal function accepts the population of binary strings. This is to decode each string of binary 
into explicit information regarding the four parts: Multidimensional Minimization Training algorithms (Alg), the network 
structure (struct), the Activation Function type of the network (AF) and the NN Training Parameters (TP). Training of 
the optimized parameters is carried out using specific topology. “GA fitness” which is the internal function, receives the 
calculated RMSE values for each individual after training. The value minimised by the GA is the fitness which is 
equivalent to the RMSE. A MATLAB code is formed for the implementation of the proposed scheme. 

 
5.0 ASSESSMENT OF RESULTS 
 
5.1 IMS-I Training  
 
For the training using 1HL, the logistic activation function for both the input and output node performed better than the 
other two activation function. Every activation function probability combination performed proportionally to the NN input 
value history. The “Resilient Back-Propagation” and “Scaled Conjugate Gradient” algorithms had better performance than 
others in cases of different number of nodes in the hidden layer. 
 
The performance of each training results was indicated by their RMSE values. The overall best performance (optimal 
RMSE) in the preliminary training exploration for both 1HL and 2HL architectures for the trip is tabulated in Table 2. The 
preliminary training results of the 1HL showed better performance for the input node using linear summation function. 
The best NN combination with minimum error value of 0.433 was achieved using the Scaled Conjugate Gradient (SCG) 
algorithm and 6 neurons in the hidden layer. For the hidden node and the output node, the logistic activation function 
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performed better than the hyperbolic tangent activation function. 
 

Table 2: The best ANN topology combination for both the 1HL and the 2HL 
 

HL RMSE Architecture Activation 
Function Training Algorithm 

1 HL 0.433 6HL1 L+L Scaled Conjugate Gradient 

2 HL 0.434 7HL1`-9HL2 P+T+L Scaled Conjugate Gradient 
 
5.2 IMS-I Validation  
 
The trained output for the proposed IMS-I was “0” for normal boiler operation and “1” for faulty boiler operation. The 
prediction from the system produced an output range values of between “0” to “1”. Thus lower and upper thresholds were 
applied, in which the lower thresholds value indicate the point where boiler operation is assumed to be normal, and upper 
thresholds indicate the point where boiler operation is considered faulty. Based on the alarm boundaries of the selected 
boiler operation variables, the NN output upper threshold and the NN output lower threshold were set at 0.4 and 0.5 
respectively. NN outputs ranging between these values indicates that the operation is neither normal nor faulty. Shift from 
normal to faulty boiler operation was based on the lower threshold and shift from faulty to normal boiler operation is based 
on the upper threshold. 
 
The IMS-I output on the real data set is shown in Fig.7. With time step of one minute interval, the total data sampling 
interval was at the point of 392nd minute before the shutdown. The introduction of fault in the operation occurred at the 
225th interval. The intelligent system was able to predict the fault within the 220th interval. The fault indication was 
considered strong (close to one) with system output of 0.95. 

 

Fig. 7: IMS-I outputs for boiler trip 
 
From the plot it is observed that despite being able to predict the fault, the system output returned to the normal boiler 
operation value (0.4) at multiple significant intervals. This occurred during the main boiler faulty operation and also 
happened towards the end of the specific fault (after the 267th minute) where the fault was about to disappear. Therefore 
the boiler operation is returned to normal again. 
 
The ability of the proposed intelligent system to continuously recognize normal boiler operation was tested using the real 
data set which contains only normal boiler operation data. Fig.8 shows the IMS-I output which is close to “0” for almost 
the whole operating period. 
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Fig. 8: IMS-I outputs for Normal operation 

The specific thermal power plant trip was predicted by the proposed IMS-I approximately 5 minutes before the actual 
trip which is considered a satisfactory time period. 
 
5.3 Hybrid Intelligent Monitoring System (IMS-II) Result Analysis 
 
In the application of this IMS-II, it is crucial to determine the best values of probability of crossover (𝑃𝑃𝑐𝑐) and 
probability of mutation (𝑃𝑃𝑚𝑚). The GA system trials were carried out using population size (𝑃𝑃𝑧𝑧) of 46 bit strings. The 
one point crossover was adopted since it is the most common crossover type. Results were obtained from the IMS-I 
as a function of 𝑃𝑃𝑐𝑐 for three different values of 𝑃𝑃𝑚𝑚 (0.01, 0.05 and 0.1). The 𝑃𝑃𝑐𝑐 value of 0.6 gave the best IMS-II 
performance. In Fig. 9 the performances of the probability of mutation were compared. The comparison showed that 
𝑃𝑃𝑚𝑚 with the value of 0.05 performed better than the other probability of mutation. 
 
 

 

Fig. 9: Performance of the IMS-II using several probabilities of crossover and mutation 
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To determine the most appropriate population size (𝑃𝑃𝑧𝑧), limited population size of L to 2L were investigated, where 
L represents the length of bit strings. Thus, the population sizes explored were between 46 and 92. The performance 
of the hybrid system using two different values of generation numbers (15 and 30) is compared in Fig. 10. The 
comparison showed that 𝑃𝑃𝑧𝑧 value of 76 resulted in the best performance. Fig.11 shows the best RMSEs obtained from 
each generation during the best run of IMS-II. 

 

Fig. 10: Performance of the IMS-II using two population size candidates 
 
 

 

Fig. 11: Best RMSE obtained during the best IMS-II run 

The main purpose of designing the GA fitness was to select fewer boiler operation variables. The selection which 
chooses more than necessary variables or the best NN topology was penalized while the training error for a fixed 
number of IMS-II iterations were reduced.  

The best GA search selections for each generation for a boiler water wall tube leak trip was actually found at generation 
10 with the following individual’s bit string of [0010010110111011111100010000000111100010000000], which is 
interpreted as a 2HL with 9 and 3 neurons in the first and second hidden layers respectively, linear summation in the first 
hidden and output layer neurons, logistic function in the second hidden layer neurons trained with Resilient Back-
Propagation training algorithm, 12 selected variables as ANN inputs. This best selection gave a value of RMSE = 0.456. 
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Table 3: Best GA selection interpretations 
 

T1 RMSE 
Selected Input Variables 

 
No. of 
Inputs 

ANN Topologies 

HSG
. Fitness Training 

Algorithm Architecture 
Activati

on 
Function 

G1 0.512541 V[1,4,6,7,9,10,12,13] 8 SCG 6HL1-2HL2 L+L+T 
G2 0.510131 V[1,2,7,10,11,12] 6 BFGS 4HL1-4HL2 L+P+T 
G3 0.534745 V[1,3,7,10] 4 Rprop 10HL1 L+P 
G4 0.489741 V[1,2,3,4,5,6,10] 7 BFGS 3HL1-5HL2 L+T+T 
G5 0.485571 V[1,2,3,4,7,10,11,12] 8 BFGS 3HL1-10HL2 L+P+P 
G6 0.510384 V[2,7,10] 3 LM 7HL1-4HL2 L+P+L 
G7 0.536561 V[2,3,4,5,9] 5 SCG 3HL1-2HL2 T+T+P 
G8 0.564870 V[17,20,22,23,24,25,26,27,29,30] 10 BFGS 4HL1-10HL2 T+P+T 
G9 0.474437 V[2,7,10,17,18,23,26,27,28] 9 LM 2HL1-7HL2 P+T+T 

G10 0.456288 V[1,2,3,4,5,6,10,18,19,20,21,25] 12 Rprop 9HL1-3HL2 P+L+P 
G11 0.530030 V[16,17,18,21,24,25,26] 7 LM 6HL1-8HL2 P+P+P 
G12 0.486163 V[1,2,23,25,26,27,28,30,31] 9 Rprop 3HL1-8HL2 P+T+P 
G13 0.523695 V[1,4,5,6,7,9,10,12,29] 9 SCG 2HL1-9HL2 T+T+T 

G14 0.523899 V[11,12,13,14,15,16,19,20,23,31,
32] 11 SCG 2HL1-4HL2 T+P+L 

G15 0.471608 V[2,4,7,10] 4 LM 4HL1-5HL2 L+T+L 
 

The best GA selection interpretation is summarised in Table 3, in which the hybrid system generation is represented 
as “HSG”. Based on the table, generation 15 and 9 gave the 2nd and 3rd best GA optimization selection. This shows 
that the two hidden layer architecture performed better than the one hidden layer architecture. During the GA search 
for these generations, operation variables 2 and 10 were the global optimal selections. 

Using the optimal results obtained from the IMS-II, the validation process was repeated on the IMS-I. The same real 
boiler validation data sets and the same decision support approach were used to determine the capability of IMS-I to 
predict the fault. The same threshold range of 0.4-0.5 were used which indicates the previously known condition of 
the system output. The IMS-II output on the validation data set are shown in Fig.12. 

 

Fig. 12: IMS-II output during the validation 
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Using a one minute time interval, the boiler tube leak trip was introduced at the 225th minute However the intelligent 
system was able to predict the fault 2 minutes before the actual trip at the 223th minute. The system output with of 
0.65 was considered a strong fault indication (close to one). The results of validation before and after using the IMS-
II indicate that the first validation outperformed the second one with time interval difference of 3 minutes. 
 
6.0 COMPARISON BETWEEN IMS-I AND IMS-II PERFORMANCES 
 
The specific boiler operation trip was detected by the proposed IMS-I before the fault occurrence, with slight 
differences from the second proposed system. The IMS-II was proposed for optimization and automation of the 
selection of optimal combination of NN topologies and boiler operation variables. The infinite problem space under 
investigation was narrowed down after some limitations on the selection of the available NN topologies and the 
number of the most influential boiler operation variables as NN inputs. Using pure NN technique, only a limited 
portion of this type of problem was covered. 
 
In this study, the problem space consisted of 246 possible topologies combinations which has to be trained several 
time with various initial conditions.  The pure NN technique becomes quite ambiguous due to an exhaustive search, 
which is almost impractical. Thus the merging of a sophisticated optimization technique with the NN technique as a 
hybrid intelligent system provides radical processing power to the exhaustive search and the optimal solution results 
are more achievable compared using the pure NN technique. 

Embedding GA with ANN enabled the system to determine the best structure of the ANN topologies and the optimized 
input parameters. The system was able to establish non-linear relationships between several boiler parameters to 
determine the behavior of the parameters based on the trip. This allows the system to detect the most influential 
parameters related to the particular trip. This was performed based on the fitness of the GA, which is equivalent to 
the RMSE values. The optimization of the ANN topologies structure was determined using GA, which determined 
the best structure from hundreds of different combinations. Trial and error approach was replaced by GA, which can 
calculate the RMSE for each combinations of ANN topology and determine the optimized structure. 

It was concluded that a direct comparison of results achieved by IMS-I and by IMS-II could give an insight into the 
efficiency of the IMSs. Therefore, a preliminary training process was performed using a pure NN in order to find the 
optimal NN topology. The search explorations were essentially focused on 1HL and 2HL architectures. Detailed results 
that were obtained by the IMS-I, together with the ones achieved by the IMS-II, are shown in Table 4. 
 

Table 4: Optimal solution given by the IMS-I and IMS-II 
 

IMS RMSE Architecture Activation Function Training Algorithm 

IMS-I 0.0642 6HL1 L+L SCG 

IMS-II 0.2029 9HL1-3HL2 P+L+P Rprop 

 
A slightly lower RMSE of 0.0642 was observed in the first system compared to IMS-II, which obtained RMSE of 0.2029. 
IMS-I was able to predict the trip 5 minutes before the actual trip whereas IMS-II predicted the trip 2 minutes before the 
actual trip. The global optimal selections by a plant control system and the hybrid IMS-II system are given in Table 5. 
From this table, it is clear that the IMS-II succeeded in finding the most effective boiler operation. The ability of the system 
to come up with the most effective boiler operation variable is essential as it allows for an accurate prediction.  

 
Table 5: The most effective boiler variables by plant control system and IMS-II 

 
IMS Variables 

Plant Control System V[5,8,9,11,14,17,18,20,22,23,24,25,26,27,29] 
IMS-II V[1,2,3,4,5,6,10,18,19,20,21,25] 

 
 
7.0       ACTIONS ON DETECTING THE BOILERS TRIPS 
 

 The main purpose of being able to predict a faulty boiler operation and identify a specific trip before it actually occurs 
is to allow corrective action to be taken within the available time. A simple corrective action of reading some control 
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component could restore a satisfactory operation. This is similar to the concept of adaptive control. Since the 
interaction of different components causes different faults that can be traced back to many alternate source, there is no 
need to trace the real cause of a fault. 

 
 When a failure occurs, it is possible to come up with alternative measurements to reduce downtime, which includes 

determining the missing measurements from general energy and mass balances. Providing substitute measurements is 
equivalent to providing replacement or standby instruments in case of a failure. This does not include any extra cost 
other than the computer cost. In case of detection of a malfunction, the process control system is manipulated by the 
operator to manually control the automatic loop. 

 
A supervisory program using computer control can be devised to prevent control action being taken based on incorrect 
information. This is done by blocking the paths in redundancy network of the faulty equipment and diverting the 
information flow to a correctly functioning path. Implementation of this function is possible using a simple computer 
program, thus improving the plant availability in case of instrument or equipment failure. When a fault is detected, it 
is important to decide if the problem is in the plant or in the detectors. It is also essential to decide if the fault is 
permanent or just temporary. Urgent plant shutdown might be required in case of a real failure. However, in case of 
problems with measuring instruments, the plant can continue its operations while the anomalies are indicated to the 
operators. 

 
8.0 CONCLUSIONS 
 
In this study, the early prediction of boiler tube leak trip using intelligent monitoring system has been confirmed. IMSs 
were developed and compared for boiler trip prediction using pure artificial neural network system and hybrid intelligent 
system. Real plant data containing normal and faulty boiler operations were used instead of mathematically simulated 
data. Due to the importance of plant data preparation, an integrated framework for boiler tube leak trip was proposed to 
train, validate and analyse the IMSs. The boiler trip considered in this study was predicted by both systems before the 
plant control system using the best ANN topology combination which includes Scaled Conjugate Gradient algorithm, 
logistic activation function for the hidden node and the output node, one hidden layer and 6 neurons in the hidden layer. 
IMS-I was able to predict the trip 5 minutes before the actual trip, whereas IMS-II predicted the trip 2 minutes before the 
actual trip. However, IMS-II was able to successfully optimize the most influential operational variable and its final 
architecture. Therefore, it can be concluded that IMS-II performed better than IMS-I.  Further development of the proposed 
system can be considered in which online real time data is used for prediction of thermal power plant boiler tube leak trip.  
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