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ABSTRACT 

 
AlexNet was a breakthrough for the convolutional neural network (CNN) and showed the greatest successful mod- 
ified CNN that works well with large-scale images. However, it was unsuccessful in texture classification tasks. To 
extend CNN’s capability, this paper proposes a modified CNN architecture called a robust-texture convolutional 
neural network (RT-CNN) to serve both complex shape and texture classification tasks, especially in the following 
challenges: (i) the same class of images naturally contains various viewpoints, scales, uneven illuminations, etc.; 
(ii) similarly shaped objects with different textures of images are often assigned into different classes; and (iii) dif- 
ferent shaped objects with similar textures of images are often assigned into the same class. The proposed scheme 
embeded a texture-embedded supplementary method, composed of texture compensation and supplement, into 
the CNN architecture. The texture compensation is constructed from texture subbands decomposed by 2D 
Littlewood-Paley empirical wavelet transform (2D Littlewood-Paley EWT). Then the texture supplement is 
constructed from texture subbands by using Gabor wavelet to extract multi-scale  and multi-orientation texture 
features.  Based  on two challenging datasets, the experimental results show that RT-CNN outperforms all test 
baseline methods: AlexNet, T-CNN, and wavelet-CNN, in terms of recognition accuracy rate. On a typical 
dataset, the recognition accuracy rate of the proposed method is still better than those of T-CNN and wavelet-
CNN, and is comparable to that of AlexNet. 
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1.0 INTRODUCTION 

A convolutional neural network (CNN) is a feed-forward artificial neural network. The classical CNN is LeNet-5 
proposed by LeCun et al. in 1998 [1]. It was successfully applied to handwritten digit recognition. The 
prominent architecture of CNN is that feature extraction and classification are cascaded in a single pipeline. 
Inside feature extraction and classification are convolutional layers and fully connected layers, respectively. This 
architecture makes it robust to translation, scaling, rotation, and noise [2]. This CNN architecture was very 
attractive to re- searchers at that time. Since then, many modified CNNs have been proposed for a variety of 
applications, such as face detection and recognition [3], [4], Chinese license plate recognition [5], and micro 
nucleus in human lympho- cyte image detection [6]. However, these modified architectures worked well with 
small-scale images. In 2012, it was a breakthrough for CNN when AlexNet, introduced by Krizhevsky et al. [7], 
showed the greatest successful modified CNN that worked well with large-scale images. AlexNet is a deep 
convolutional neural network archi- tecture that shows its ability in classifying the 1.2 million high-resolution 
images in the ImageNet dataset. It can also alleviate the overfitting problem, which always occurs in large-scale 
images, by means of data augmentation and dropout. For these reasons, AlexNet becomes the state of the art for 
various machine vision tasks [8], [9], [10]. Although the conventional CNN architecture achieves overall 
performance in object/shape analysis as reported in [11], [12], [13], [14], its performance in texture analysis is still 
challenging due to the following cases: (i) the same class of images naturally contains various viewpoints, scales, 
uneven illuminations, etc. [15]; (ii) similarly shaped objects with different textures of images are often assigned 
into different classes [16]; and (iii) different shaped objects with similar textures of images are often assigned 
into the same class [16]. These characteristics of texture images are different from those of object images. In 
addition, the conventional CNN extracts features based on a deep convolutional architecture to represent a shape 
of an object. However, the texture loss is occurred when the deeper convolution is used [17]. Responding to 
these challenges, modified CNNs for texture classification have 
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Fig. 1: Architecture of LeNet-5 

Fig. 2: Architecture of AlexNet 
 

been proposed to improve their performance. To the best of our knowledge, CNNs for solving texture analysis 
can roughly be categorized into three solutions: (i) data augmentation, (ii) modified CNN architecture, and (iii) a 
combination of data augmentation and modified CNN architecture. For the first solution, the performance of 
CNN can be improved by using a data augmentation technique. Data augmentation is a process that splits a large 
image into a set of small images called patches. This process increases the number of input images for training the 
CNN model based on a variety of input patterns. It can reduce the overfitting problem [7]. For example, Luiz G. 
et al. [18] presented a CNN model based on texture analysis for high resolution images in a forest species dataset. 
Luiz's method applied a data augmentation technique to break down a high resolution image into a set of patches. 
The data augmentation was applied to both training and testing processes. With the augmentation technique, the 
diversity of patterns is increased for CNN training; thus, the recognition accuracy rate is increased in CNN testing. 
Eunsoo P. et al. [19] proposed a CNN model based on fingerprint patch extraction. Eunsoo's data augmentation 
generated patches from fingerprint image by using rotation and random cropping. This technique can reduce the 
effect of the overfitting problem. In addition, the model trained on patches from Eunsoo's data augmentation was 
robust to image rotation. Then all fingerprint patches were applied to training and testing processes of CNN. 
Wang Q. et al. [20] developed a CNN model to recognize high resolution computed tomography (CT) images in 
a lung dataset. They decomposed a high resolution image into a set of patches at different scales and orientations 
by means of Gabor and local binary pattern (LBP). This makes the CNN model robust to scale, orientation, and 
rotation of images. 

Although data augmentation can improve the performance of CNN in terms of recognition accuracy rate, its im- 
plementation scheme cannot be done within a single model. In order to achieve a simple architecture under the 
single model, modification of CNN architecture for texture analysis is proposed as the second solution for solving 
texture analysis based on CNN. Texture CNN (T-CNN) proposed by Andrearczyk et al.[17] was based on the use 
of filter banks in CNN. It was developed under the concept of preserving texture. In this concept, an energy feature 
vector is generated by averaging each feature map of the last convolutional layer. This energy feature vector is 
called an energy layer. The energy layer is inserted between the last convolutional layer and the first fully con- 
nected layer. This leads to a reduction of parameters, memory requirement, and computation time. However, the 
energy layer always contains only the low-frequency features, but not high-frequency features [21]. In other words, 
the high-frequency features are lost during the training process. In order to solve the texture loss and overfitting 
problems, a combination of data augmentation and modified CNN architecture is introduced to solve the texture 
analysis as the third solution. S. Fujieda et al. [21] developed a wavelet CNN to solve both problems by using data 
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Fig. 3: Architecture of T-CNN with two convolutional layers (T-CNN-2) 

Fig. 4: Architecture of wavelet CNN with 3-level decomposition 
 

augmentation and wavelet transform. Ordinarily, the conventional CNN can capture features well based on spatial 
domain, but cannot capture features based on spectral domain. Nevertheless, scale invariant features commonly 
provide in spectral domain. Therefore, the concept of the wavelet CNN is a combination of the features from both 
spatial and spectral domains under a single model. The wavelet CNN not only reduces the overfitting problem, but 
also reduces the information loss. However, wavelet decomposition can extract only features from four subbands 
containing one low and three high frequencies. In fact, texture images not only consist of low and high frequencies, 
but also include multiple scales with uncertain directions of texture. This means that the wavelet decomposition 
cannot efficiently preserve significant texture information. Certainly, the performance improvement of CNN is 
still challenging in texture analysis. When we look inside each convolutional layer, all filters are optimized by a 
backpropagation algorithm, leading to optimized filter construction from real data. However, for compensation of 
the lost texture, adaptive texture filters are essential. For this reason, this paper proposes a modified CNN archi- 
tecture called a robust-texture convolutional neural network (RT-CNN). The remainder of this paper is organized 
as follows. Architectures of the conventional CNN and of modified CNNs are reviewed and research problems 
are formulated in Section 2.0. Section 3.0 introduces our proposed RT-CNN method. The experimental results are 
reported and discussed in Section 4.0, and finally, the conclusion is presented in Section 5.0. 

 

2.0 PROBLEM FORMULATION 

In this section, we focus on a modified CNN architecture solution in order to keep the concept of a single pipeline. 
Architectures of the conventional CNN and of modified CNNs are reviewed and their limitations are pointed out 
below. 
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2.1 Convolutional Neural Network Architecture and Its Extensions 

A conventional CNN architecture originates from the feature extraction cascaded with classification. As 
schematically shown in Fig. 1, the feature extraction consists of multiple pairs of layers, where a pair of layers 
contains a convolutional layer and an average-pooling layer. The conventional CNN architecture consists of 
multiple pairs of layers for feature extraction, except that the last convolutional layer is single. The convolutional 
layer extracts different features from receptive fields, which are input images. The outputs of the convolutional 
layer are feature maps. The average-pooling layer cascaded from the convolutional layer reduces the size of 
feature maps by applying an average filter of size 2×2 with stride of 2 to sub-regions of the feature map. This 
operation is repeated from one layer to the next layer over and over. In feature extraction, simple features, such as 
straight edges, colors, and curves, are extracted by the first convolutional layer, whereas complex features, such as 
the shape of an object, are extracted by the last convolutional layer. After that, all extracted features are classified 
by a fully connected layer which is also known as a classifier. The conventional CNN uses two fully connected 
layers for activating complex features to obtain the overall shape of the image. The outputs of the last fully 
connected layer are probabilities for each class. The maximum probability is always assigned to the predictive 
class. AlexNet [7] is a deep convolutional neural network that, in practice, provides excellent results in object 
analysis. Its architecture contains five convolutional layers. The early convolutional layers are usually followed 
by max-pooling layers. A max filter of size 2×2 with stride of 2 is applied to sub-regions of the feature map and 
then the maximum value of each sub-region is selected. The three fully connected layers are used for 
classification as schematically shown in Fig. 2. A softmax function is applied for calculating probabilities of the 
last fully connected layer. AlexNet's architecture can also prevent an overfitting problem by using a dropout 
technique [22] in the fully connected layers. However, AlexNet does not work well in texture analysis, since the 
early convolutional layer plays a major role in low-pass filters, thus most textures are filtered out from this 
operation as illustrated in Subsection 2.2. A texture convolutional neural network (T-CNN) [17], extended from 
AlexNet, can work well in texture analysis. It is mainly designed for reducing the complexity in terms of the 
number of parameters. As a result, less memory and computing time are consumed. As schematically shown in 
Fig. 3, T-CNN architecture is modified in a gap of feature extraction and classification such that an energy layer 
is inserted between the last convolutional layer and the first fully connected layer. The energy layer pools energy 
of the feature maps of the last convolutional layer. Each feature map is calculated by averaging its activated 
outputs. The output vector of the energy layer is forwarded to the first fully connected layer. The output 
probabilities are calculated using the softmax function. T-CNN usually provides good performance when three 
convolutional layers are used. However, most textures are lost in the output vector of the energy layer extracted 
from the feature maps. This is a reason why T-CNN cannot achieve a great performance improvement. A wavelet 
CNN [21] is a modified architecture constructed from a combination of a conventional CNN and a wavelet 
spectral analysis. As schematically depicted in Fig. 4, the wavelet spectral analysis is used to decompose an 
image into low-frequency and high-frequency subbands. The outcomes of this stage are disseminated to the 
regular convolutional layer path and the compensation path; that is, all decomposed subbands are forwarded to the 
regular convolutional layers while the decomposed low-frequency subband is concatenated to feature maps before 
forwarding to the next convolutional layer. The modified architecture uses convolutional filters with stride of 2 and 
1×1 padding. This can reduce the size of feature maps and remove the max-pooling layers without diminishing 
the recognition accuracy rate. An energy layer [17] is added to improve the performance on the small number of 
parameters. This approach requires data augmentation for generating training sets. In this way, an input image is 
randomly cropped and flipped to generate a variety of training images. The wavelet CNN provides the best result 
when four convolutional layers with four level decompositions are used. However, data augmentation is still 
necessary. 

 

2.2 Analysis of CNN Architecture for Texture Classification 

This subsection aims to analyze the problems of modified CNN architectures for texture classification and to point 
out the main causes of lower performance. 

AlexNet is a well-designed architecture for object analysis. It can efficiently extract a shape or an external boundary 
of an object. This success comes from of layer to layer convolution operation; that is, the last convolutional layer 
can extract complex features from simple features of the early convolutional layer. The complex features, which 
always represent overall shapes of images, are forwarded to a fully connected layer portion. The classification 
results in the last fully connected layer in the form of probabilities of predictive classes [17]. Although AlexNet 
provides excellent results in object detection and recognition tasks, it does not achieve a good performance in 
texture analysis. The main cause is texture loss. The texture is easily lost due to a deep convolutional architecture 
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Fig. 5: Examples of filters determined by AlexNet architecture. Figs. (a), (b), (c), (d), and (e) are a set of filters of the first, second, third, forth, and fifth convolutional 
layers, respectively.
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Fig. 6. Texture component decomposition. (a) An original image, (b) a Fourier spectrum of Fig. 6(a),  
(c) a segmented Fourier spectrum, (d) a shape spectrum, (e) a noisy spectrum, (f) a texture spectrum,  

(g) a shape component, (h) a noisy component, and (i) a texture component. 
 

from layer to layer of the conventional CNN. As shown in Fig. 2, when we look inside a feature extraction portion, 
all feature maps are extracted by filters of convolutional layers, where these filters are optimized from real data. 
This results in well featured maps. In another point of view, the deep convolutional architecture commonly makes 
the texture lost, since CNN extracts features in the form of multiresolution analysis as reported in [21]; that is, the 
deeper convolutional architecture, the higher texture loss. This phenomenon can be seen in Fig. 5 such that all 
optimized filters are in Fourier domain. A sample of the first convolutional layer as shown in Fig. 5(a) looks 
similar to a low-pass filter. This means that this kind of filter allows the low frequency passing through the next 
layer, but it blocks most median and high frequencies. In this case, the most textures are lost at this layer. When we 
look into deeper layers, the second, third, forth, and fifth convolutional layers are similar to high band pass filters 
as shown in Figs. 5(b), 5(c), 5(d), and 5(e), respectively. These filters allow most median and high frequencies 
passing through the feature map of the first convolutional layer. However, the most median and high frequencies 
in feature map are already lost. Therefore, in AlexNet's architecture containing five convolutional layers, the last 
layer always represents the low-frequency feature. Indeed, the texture possibly consists of both median and high 
frequencies. This results in the low performance for texture classification. 

A texture CNN (T-CNN) was proposed to alleviate the texture loss problem. The T-CNN used a shallow convolu- 
tional architecture. It uses only three convolutional layers, but adds an energy layer. The role of the energy layer is 
to extract feature maps from the last convolutional layer and to present the result in one value for one feature map. 
This shallow convolutional architecture with an energy layer added not only preserves image texture but also 
reduces the overfitting problem which occurs from a large number of parameters. Indeed, the achievement of T-
CNN is parameter reduction. However, it is not clear that the T-CNN can improve the performance by texture 
preservation. When we look inside the complex feature, it still uses the low-frequency feature that can preserve 
some textures for classification. To solve the texture loss problem, a wavelet CNN was proposed to overcome this 
problem. This architecture can preserves both low and high frequencies. In other words, it is a deep convolutional 
architecture that can preserve texture. This approach applies wavelet transform for decomposing low and high 
frequencies of images. These decomposed images instead of the whole image (undecomposed image) are used for 
training the model. This can reduce median and high frequency loss when the input image is extracted feature map 
by the first convolutional layer. In addition, each level of decomposed images is concatenated with feature maps 
of CNN before forwarding to the next convolutional layer except the first convolutional layer. This architecture 
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can alleviate the texture loss problem, when the feature extraction portion is deepened. However, the wavelet CNN 
can preserve only some textures based on the wavelet transform that can decompose an image into four subbands: 
low-low, low-high, high-low, and high-high subbands [23], it cannot preserve other details such as scales and di- 
rections of the textures. As mentioned, the problem of conventional and modified CNN architectures for texture 
analysis is texture loss. The main causes can be summarized as: (i) the deeper convolutional architecture and (ii) 
the use of undecomposed images for training. 

 

 
 

Fig. 7: Robust texture descriptors. (a) a texture component, (b) a set of the first scale with eight orientations of  
Fig. 7(a), and (c) a set of the second scale with eight orientations of Fig. 7(a). 

 

 
 

Fig. 8. Architecture of robust-texture convolutional neural network with three convolutional layers. 
 

3.0 PROPOSED METHOD 

This paper aims to propose a robust-texture convolutional neural network for texture classification. Concepts and 
algorithms of the proposed method are covered in the following topics: definitions of texture component and a set of 
robust-texture descriptors, architecture of a robust-texture convolutional neuron network, and a robust texture- 
embedded supplementary method. 
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3.1 Definitions of Texture Component and a Set of Robust-Texture Descriptors 

A texture component and robust-texture descriptors of an image can be defined as below. 
 

Definition 1: Let F be a Fourier spectrum of an image f. If F is adaptively segmented into N non-overlapping ring-
shape subbands and then the first and last subbands are removed, the remaining subbands are texture subbands. 

 
Definition 2: Let B and W be the texture component from Definition 1 and the texture filters defined by v scales 
and u orientations, respectively, in spatial domain. The convolution of B and W generates multi-scale and multi-
orientation features, G. The concatenation of B and G yields a set of robust-texture descriptors. 

 
From Definition 1, a visual definition can be expressed by using Veined image in DTD dataset as shown in Fig. 6(a). 
Fourier spectrum F of Fig. 6(a) is shown in Fig. 6(b). In order to decompose a texture component from an image, 
f, F is segmented into N non-overlapping ring-shape subbands by using a 2D Littlewood-Paley empirical wavelet 
transform (2D Littlewood-Paley EWT) based on local minima detection with scale-space histogram segmentation 
[24], [25]. This method not only adaptively segments spectrum but also efficiently decomposes meaningful com- 
ponents. Fig. 6(c) shows that Fourier spectrum F of Fig. 6(b) is segmented by using the 2D Littlewood-Paley 
EWT. It is decomposed into 9 subbands labeled with numbers 1 to 9. A characteristic of segmentation in Fig. 6(c) 
is ring-shape. According to Definition 1, the first and last subbands of Fig. 6(c) contain shape and noisy spectra as 
depicted in Figs. 6(d) and 6(e), respectively. F without the first and last subbands as shown in Fig. 6(f) is a texture 
spectrum corresponding to Definition 1. Figs. 6(g), 6(h), and 6(i) are inverse Fourier transforms of Figs. 6(d), 6(e), 
and 6(f), respectively. Fig. 6(g) shows the blurred shape image corresponding to the main object in the original 
image. Grainy image, i.e., a noise component is depicted in Fig. 6(h) which greatly differs from the original image. 
Fig. 6(i) shows texture and sharp edge—a texture component of the original image. Moreover, the structure of 
Fig. 6(i) is the similar to that of Fig. 6(a). This strongly supports that the texture component obtained from local 
minima spectrum segmentation by using scale-space histogram satisfies our Definition 1. From Definition 2, a 
visual definition can be expressed by using a texture component image derived from Definition 1 as shown in Fig. 
7(a). When the texture component B is filtered by Gabor wavelet with v scales and u orientations, the multi-scale 
and multi-orientation features are generated as illustrated in Figs. 7(b) and 7(c), respectively. A set of robust- 
texture descriptors are formed from a concatenation of Figs 7(a), 7(b), and 7(c). This method not only makes use 
of the multi-scales and multi-orientations to decompose the significant textures but also helps remove noise. This 
strongly proves that a set of robust-texture descriptors obtained from extracting multi-scale and multi-orientation 
features by using Gabor wavelet and then concatenated with the texture component satisfies our Definition 2. Ac-
cording to Definitions 1 and 2, a set of robust-texture descriptors are important for representing complete image 
contents. Moreover, these texture descriptors make the model robust to various scales and orientations of texture in 
images. Therefore, the proposed method uses a robust texture-embedded supplementary method to construct the 
robust-texture descriptors for supporting texture preservation. The robust texture-embedded supplementary section 
is embedded into CNN under a single pipeline. The embedded architecture is called a robust-texture convolutional 
neural network (RT-CNN). More details of the proposed architecture are given below. 

 

3.2 Architecture of Robust-Texture Convolutional Neural Network 

From distinctive point of CNN, all filters of convolutional layers are automatically optimized by training process. 
This leads to create optimized filters for feature extraction of CNN. Typically, filters of the early convolutional 
layer are trained from input image contents such as edge, shape, and texture, and then are forwarded to the next 
convolutional layer. In other words, the filters of the next convolutional layer are trained from the feature map  
of its previous convolutional layer. As mentioned in Section 2.0, the image contents in the feature map of the  
first convolutional layer are lost. Therefore, compensation of the lost texture is essential. Responding to this, the 
robust-texture convolutional neural network is proposed. The robust texture-embedded supplementary section is 
added to the CNN model for providing a set of robust-texture descriptors. This supplementary section composed of 
a set of robust-texture descriptors is embedded in front of the first convolutional layer and also concatenated with 
the feature map of each convolutional layer before forwarding to the next convolutional layer. More details of the 
robust texture-embedded supplementary method are explained in the next subsection. The proposed architecture 
contains eight layers—a robust texture-embedded supplementary, three convolutional, one single energy, and three 
fully connected layers as shown in Fig. 8. The convolutional layer extracts feature map by using 3×3 convolutional 
filters with the stride of 2 and 1× 1 padding. The ReLU non-linearity and normalization are applied to the feature 



A Robust-Texture Convolutional Neural Network (Special Issue 2019). pp.157-171 
 

 

165 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 
 

u 

2 2 

map of every convolutional layer. An energy layer [17] is inserted before fully connected layer to extract energy 
descriptors from the feature maps of the last convolutional layer. The three fully connected layers are used for 
classification in the same way as AlexNet. 

3.3 Robust Texture-Embedded Supplementary Method for CNN 

From observation of texture patterns, their characteristics contain multiple scales with uncertain directions. Thus, 
robust texture becomes a key factor for supplementing the CNN architecture. In other words, the robust texture al- 
ways contains multi-scale and multi-orientation contents. In order to meet requirement, a robust texture-embedded 
supplementary method is proposed to preserve important textures as much as possible and is embedded into the 
CNN architecture under a single pipeline. The proposed algorithm can be described as follows. 

 
Step 1: Transform an input image ψ into the Fourier spectrum Ψ. The input image and its Fourier spectrum 

can be seen in Figs. 6(a) and 6(b), respectively. 
 

Step 2: Segment Ψ by using 2D Littlewood-Paley EWT [24], [25] to obtain a set of subbands as shown in 
Fig. 6(c). It can be written in a vector form as Eq. (1). 

 
Ψ = [Ψ1, Ψ2, Ψ3, ..., Ψn] (1) 

 
where Ψi is the ith Fourier spectrum subband and nth is the last subband. 

 
Step 3: Remove the first and the last subbands, Ψ1 and Ψn, of Fourier spectrum Ψ as expressed in Eq. (2). 

The result of ΨT is shown in Fig. 6(f). 
 

n−1 
ΨT = Ψi (2) 

i=2 
Step 4: Apply inverse Fourier transform to ΨT to obtain texture component ψt as shown in Fig. 6(i). 
 
Step 5: Extract multi-scale (MS) and multi-orientation (MO) features δu,v from a texture component ψt by 

using Gabor wavelet filter [26], [27] as defined by Eq. (3) 
 

δu,v = ψt ∗ ϕu,v (3) 

where * is the convolution operator, δu,v, is the multi-scale and multi-orientation features. ϕu,v is the Gabor filter at 
scale u and orientation v. The multi-scale and multi-orientation features with two scales and eight orientations are 
illustrated in Figs. 7(b) and 7(c), respectively. Then, a set of multi-scale and multi-orientation features, δ, is 
defined by Eq. (4). 
 

δ = {δu,v | u ∈ {1, ..., 5}, v ∈ {1, ..., 8}
 

(4) 

Step 6: Construct a set of robust-texture descriptors γl=1 at level l by concatenating ψt and δ. 
 
As mentioned in the previous section, the deep convolutional layer makes the texture lost. It is a cause of the  low 
recognition accuracy rate, since it cannot recognize (i) similarly shaped objects with different textures of im- ages 
often assigned into different classes [16] and (ii) different shaped objects with similar textures of images often 
assigned into the same class [16]. Therefore, texture compensation in each depth of convolutional layer is required. 
In order to complete this requirement, a set of robust-texture descriptors are constructed in the form of levels to 
embed into each convolutional layer. Robust-texture descriptor construction at level l+1 is described as follows. 
 

Step 1: Reduce texture component size at level l from the texture resolution M-by-N to M  -by- N . The 
texture component at level l+1, ψtl+1, is obtained by using subsampling operation [28], [29] as shown in Fig. 8.  

Step 2: Extract multi-scale and multi-orientation features δl+1 from ψtl+1 by using Eqs. (3) and (4), 
respectively. 

Step 3: Construct a set of robust-texture descriptors γl+1 by concatenating ψtl+1   and δl+1. 
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Fig. 9: Characteristics of the two challenging datasets: (a) Varied texture images within the same class of the kth- 
tips-2b dataset; each row shows images from four sets of three following classes—lettuce leaf, wool, and brown 

bread classes; (b) Examples of images in CUReT dataset. 
 

The outcome of the robust texture-embedded supplementary method is a set of robust-texture descriptors 
generating for each convolutional layer as illustrated in Fig. 8. 
 

4.0 DATASETS, EXPERIMENTS, AND RESULTS AND DISCUSSION 

This section describes three publicly available datasets that are used in this experiment, experimental evaluation 
with these datasets, experimental results and discussion of the results. 

4.1 Datasets Used in This Experiment 

As mentioned in Section 1.0, texture analysis is a challenging problem due to the following reasons: (i) images  in 
the same class may naturally contain many different viewpoints, different scales, uneven illuminations, etc.; (ii) 
similarly shaped objects with different kinds of texture are often assigned to the different class; and (iii) different 
shaped objects with same kinds of texture are often assigned to same classes. In order to evaluate the performance 
of the proposed method while covering all of these three challenges, three public texture datasets that reflect them 
are used. 
 
To cover the first challenge, the performance of the proposed method is evaluated by using kth-tips-2b [15] and 
CUReT [30] datasets. The kth-tips-2b dataset contains 432 texture images of 11 classes. Each class consists of 
four sets and each set contains 108 images. Each set of images is used for training one at a time while the re- 
maining three sets are used for testing. The CUReT dataset contains 61 classes. Each class consists of 92 images. 
Each class is equally divided into two sets, a set of 46 images for training and a set of 46 images for testing. The 
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Fig. 10. An example of images in DTD dataset; each row shows an image from Waffled, Braided, Dotted and 
Bubbly classes; a single image contains both texture and object(s). 

 

experiment is repeated 20 times. For the respective kth-tips-2b and the CUReT datasets, each image in the same 
class shows a different viewpoint, illumination and scale condition as shown in Figs. 9(a) and 9(b). To cover the 
second and the last challenges, a Describable texture dataset (DTD) [16] is used for evaluation of the performance 
of the proposed method. This dataset contains 47 classes of 120 images each. Forty images in each class are used 
for training, another 40 for validating, and the other 40 for testing. This dataset includes 10 splits. Most images in 
this DTD dataset contain both (an) object(s) of various shapes and different textures. Images in the same class 
often contains (an) object(s) with the different shape but the same texture such as a Waffled class or a Braided class 
as shown in Figs. 10(a) and 10(b), respectively. Images from different classes often contain (an) object(s) with the 
same shape but the different texture such as a Dotted class and a Bubbly class as shown in Figs. 10(c) and 10(d), 
respectively. 
 

5.0 EXPERIMENTS 

Ordinarily, any architectures of the convolutional neural network type will have a different depth of convolutional 
layer because each of them would be designed to work specifically with a different kind of dataset such as lung tex- 
ture and forest species datasets. Therefore, the preliminary experiment is the proposed architecture with the depth 
of convolutional layer. This experiment aims to test the recognition accuracy rate of the proposed architecture 
based on three different kinds of datasets of which the depth of its convolutional layer is progressively increased. 
The proposed architecture is tested to four convolutional layers of depth. 
 
The results in Table 1 show the average recognition accuracy rate and standard deviation on each dataset of each 
depth of convolutional layer. The best recognition accuracy rate achieves by our proposed architecture is used to 
compare with those achieves by the following baseline methods: AlexNet [7], T-CNN [17], and wavelet CNN [21]. 
The results in Table 2 show the average recognition accuracy rate and standard deviation on each dataset of all 4 
architectures. All images in every dataset are resized to 227  227 for training. Our proposed architecture is trained 
from scratch by using a learning rate of 0.001 and a weight decay of 0.0005 [17]. 
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Table 1: Comparison of the recognition accuracy rates that our proposed architecture achieved at 4 depth levels on 
kth-tips2-b, DTD, and CUReT datasets 

 
Dataset Level 1 Level 2 Level 3 Level 4 

kth-tips2-b 55.0 ± 2.0 63.1± 1.9 60.1± 1.9 58.4 ±1.8 
DTD 20.3 ±1.1 25.2± 1.3 34.8± 1.2 32.0± 1.2 

CUReT 94.9 ±0.6 98.1± 0.7 97.2± 0.7 96.1± 0.8 
 

Table 2: Comparison of the recognition accuracy rates achieved by the four architectures trained from scratch on 
kth-tips2-b, DTD, and CUReT datasets 

 

Dataset AlexNet T-CNN Wavelet CNN Proposed 
Method 

kth-tips2-b 47.6 ±1.4 48.7± 1.3 60.5±2.1 63.1 ±1.9 
DTD 22.7 ±1.3 27.8± 1.2 32.3± 0.8 34.8± 1.2 

CUReT 98.7 ±0.6 98.2± 0.6 98.0± 0.8 98.1± 0.7 
 
 

5.1 Experimental Results and Discussion 

 
The experimental results of the proposed architecture with the depth of convolutional layer are shown in Table 1. 
Our proposed architecture achieves the highest recognition accuracy rate on the kth-tips2-b and CUReT datasets at 
depth level 2, whereas it achieves the highest recognition accuracy rate on the DTD dataset at depth level 3. The 
comparative experimental results show that the proposed architecture outperforms all of the baseline methods on 
the kth-tips2-b and DTD datasets, while its performance on the CUReT dataset is virtually the same as those 
achieved by the baseline methods as shown in Table 2. In particular, on the kth-tips2-b and DTD datasets, the 
improvement in performance of the proposed method is very significant when compared to those of AlexNet, T-
CNN, and wavelet CNN: 15.5%, 14.4%, and 2.6% better, and 12.1%, 7.0%, and 2.6% better, respectively. 
However, the wavelet CNN requires data augmentation for performance improvement whereas our architecture 
does not. On the CUReT dataset, the recognition accuracy rate of the proposed method is slightly different from 
those of the baseline methods, but the differences are minute. For instance, the difference in the recognition rate of 
the proposed method to that of Alexnet which achieves the highest recognition accuracy rate on this dataset is only 
0.6%. 

 
Figs. 11, 12, and 13 show examples of the images in the three datasets that are correctly recognized to be in  the 
same class by all four methods. Each row shows examples of the images in the same class. For the images in the 
kth-tips2-b dataset in Fig. 11, it can be seen in these figures that our proposed method and wavelet CNN method 
are able to correctly recognized different-looking images (different viewpoints, different scales, uneven 
illuminations, etc.) to be of the same class while the AlexNet and T-CNN methods are able to correctly recognize 
only similar-looking images (slightly different viewpoints, slightly different scales, slightly uneven illuminations, 
etc.) to be of the same class. For the images in the DTD dataset in Fig. 12, it can be seen that AlexNet is able  to 
correctly recognize shaped objects to be of the same class while T-CNN is able to correctly recognize mainly 
shaped objects but also a few textures, whereas wavelet CNN and our proposed methods are able to correctly 
recognize both shaped objects and textures as belonged to the same class equally well. On the other hand, the 
images in the CUReT dataset in Fig. 13 are all images of textures and in this case, all of the tested methods 
correctly recognized them as belonged to the same class equally well. The reason that our proposed architecture 
achieves better recognition accuracy rate is that it is able to resolve the texture loss by texture compensation and to 
provide the significant textures by texture supplement as schematically shown in Fig. 8. Figs. 14(b) and 14(c) 
show an example of feature maps from the last convolutional layer of AlexNet and one from the proposed method, 
respectively. The black pixels in each feature map signified a loss of contents. The red border circumscribes the 
area of one feature. When the contents in the feature map processed by our proposed architecture and the contents 
of the same feature map processed by the AlexNet architecture are compared as can be observed in Figs. 14(a) and 
14(b), it can be seen that the proposed method is able to preserve the contents whereas the AlexNet architecture 
suffers a loss of contents. This leads to the improvement in the recognition accuracy rate. 



A Robust-Texture Convolutional Neural Network (Special Issue 2019). pp.157-171 
 

 

169 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 
 

 
 
 

 
 

Fig. 11: Examples of images correctly recognized in the same class by AlexNet, T-CNN, wavelet CNN, and our 
proposed architecture in kth-tips2-b dataset, each row shows the image from Aluminum, Brown bread, and  

Lettuce leaf classes. 

Fig. 12: Examples of images correctly recognized in the same class by AlexNet, T-CNN, wavelet CNN, and our 
proposed architecture in DTD dataset, each row shows the image from Freckled, Stratified, and  

Crosshatched classes. 

 

Fig. 13: Examples of images correctly recognized in the same class by AlexNet, T-CNN, wavelet CNN, and our 
proposed architecture in CUReT dataset, each row shows the image from Sample 01, Sample 45, and  

Sample 61 classes. 

 
Fig. 14: Comparison of a loss of contents: (a) Input image; (b) feature map of the last convolutional layer from the 
input image achieved by AlexNet; (c) feature map of the last convolutional layer from the input image achieved by 

our proposed architecture. 
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6.0 CONCLUSION 

In this paper, we have proposed a modified CNN architecture called a robust-texture convolutional neural network 
(RT-CNN). This prominent architecture is that it can work well with both complex shape and texture classification 
tasks. The main contributions of the proposed architecture are (i) compensation of lost textures with texture com-
ponents adaptively decomposed by 2D Littlewood-Paley empirical wavelet transform (2D Littlewood-Paley EWT) 
and (ii) supplement of significant textures with multi-scale and multi-orientation features efficiently extracted by 
Gabor wavelet. Both the compensation of lost textures and the supplement of significant textures are embedded to 
the conventional CNN architecture by placing those texture feature images in the front of the first convolutional 
layer and concatenating to each convolutional layer. When the implementation of the proposed architecture is 
tested with two challenging texture datasets, our proposed RT-CNN can significantly improve the recognition 
accuracy rate when compared to all test baselines. On the typical dataset, the proposed method is still better than 
two baseline methods: T-CNN and Wavelet-CNN, but is slightly worse, 0.6%, than AlexNet. This achievement 
proves that the proposed architecture really works well with both complex shape and texture classification tasks. 
In future work, the RT-CNN's capability will be extended to a fully adaptive RT-CNN; that is, the number of scale 
and orientation textures will be based on the behavior of real image textures. 
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