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ABSTRACT 
 
A panel of a large number of common Single Nucleotide Polymorphisms (SNPs) distributed across an entire porcine 
genome has been widely used to represent genetic variability of pigs. With the advent of SNP-array technology, a 
genome-wide genetic profile of a specimen can be easily observed. Among the large number of such variations, there 
exists a much smaller subset of the SNP panel that could equally be used to correctly identify the corresponding breed. 
This work presents a SNP selection heuristic that can still be used effectively in the breed classification. The features 
were selected by combining a filter method and a wrapper method–information gain method and genetic algorithm–plus 
a feature frequency selection step, while classification used a support vector machine. We were able to reduce the 
number of significant SNPs to 0.86 % of the total number of SNPs in a swine dataset with 94.80 % classification 
accuracy. 
 
Keywords: Bioinformatics, Feature selection, Information gain, Genetic algorithm, Support vector machine, Swine, 
Single nucleotide polymorphisms. 
 
1.0 INTRODUCTION 

 
Swine breed improvement has played an important role in boosting the quality and quantity of pork in the market. 
Examples of swine breeds that are currently popular in many countries are Landrace, LargeWhite, Duroc, Creole, Wild 
boar and Hampshire [1]. Each breed has distinctive characteristics. For example, the breeds that are commonly used as 
breeders are LargeWhite, Landrace, and Duroc because they are strong, grow quickly and provide a good quality 
carcass, especially the LargeWhite breed. The Duroc breed, on the other hand, grows well under any weather conditions 
and is very popular as a breeder for beautiful hybrids, while the Landrace breed is very good at rearing its offspring but 
carries poor traits, e.g., having weak legs. Therefore, cross breeding among these breeding stocks has become a common 
practice to produce desired characteristics. 
 
The unique characteristics of each breed are manifest in differences in the deoxyribonucleic acid (DNA) base sequence 
of each breed. DNA is a nucleic acid that stores genetic information of living beings. Unfolded, DNA can be seen as an 
arrangement of several nucleotides sequentially connected into two intertwining strands of polynucleotides that consist 
of four kinds of bases: adenine (A), thymine (T), cytosine (C), and guanine (G). Base pairing between the two 
polynucleotide strands is a complementary base paring by hydrogen bonds: Adenine pairs with thymine and cytosine 
pairs with guanine. Two molecules of nucleotide can be arranged in DNA strands in 16 ways (or 4n, where n is the 
number of molecules). Therefore, in a typical DNA molecule that has hundreds of thousands or even a million 
nucleotide pairs, the base sequence of the DNA molecules from two different individuals will be very different. It is the 
source of genetic polymorphism, such as skin color, height, severity of contracted disease and diverse responses to 
drugs. These diverse characteristics stem from different sequential base sequences, which is called single nucleotide 
polymorphism (SNP), that can occur at any of the million positions in a DNA chain. It has been estimated that SNP can 
be found in every sequence of 300 bases. An example of different base sequences that result in an SNP is between 
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GCAACGTTGA and GCAGCGTTGA. This SNP is found in more than 1 % of individuals in a population. It is just 
called point mutation, if it affects a smaller percentage of a population. Porcine SNP analysis can determine the SNPs 
that affect its reproduction and growth. However, since there are over one million SNPs in the DNA of a living 
organism, an SNP analysis by a human expert is out of the question, notwithstanding the cost and resources needed to do 
it. Therefore, a better way to address this issue is to apply bioinformatics which is an integration of biology and medical 
and computer sciences. Various techniques for processing data by computer have been adapted for uses in 
bioinformatics. One of the most powerful and developed computer techniques is machine learning, which integrates the 
tools of computer, engineering, and statistics. Broadly speaking, this technique enables a computer to respond to new 
data by itself based on prior information. Machine learning has been used in several branches of bioinformatics such as 
genomics, proteomics, microarray, systems biology, evolution and text mining [2]. This reference also describes several 
machine learning techniques such as Support Vector Machine (SVM), Bayesian classifiers, Decision Tree, k-Nearest 
Neighbors, and Artificial Neural Networks. Machine learning can be divided into three categories according to the type 
of learning: supervised learning, unsupervised learning and reinforcement learning. We used the supervised learning 
technique, which involves construction of a predictive model from a training dataset and validation of the model with a 
testing dataset. The algorithms used in supervised learning can be either regression or classification. In this study, it is a 
classification task. 
 
In general, a learning technique for constructing a model can support a large number of features but often is not effective 
at classification due to over-fitting when there are more features than samples. Over-fitting occurs when the constructed 
model has too high an accuracy, which, when used with a test dataset gives a low prediction accuracy. One way to solve 
this uses a small number of features. Hence, several techniques for reducing the number of features have been reported 
in [3, 4]. These review papers report applications in bioinformatics, that have used feature selection techniques, such as 
taxonomy, microarray domain and mass spectrometry. They also report three types of feature selection techniques used 
in bioinformatics: 1) filter methods such as Euclidean distance, i-test and information gain (IG); 2) wrapper methods 
such as genetic algorithms (GA) and other nature-inspired algorithms; and 3) embedded methods such as Random 
Forest, SVM weight vector and Decision Trees.  
 
The differences in feature selection by the filter, wrapper and embedded methods are described next. The filter method 
selects features by sorting feature indices and selecting the indices with the highest rank; feature selection and 
classification are independent of each other here. The advantages are that it is simple and fast. The wrapper method 
selects features by evaluating the suitability of each subset of features after classification, resulting in a subset of 
features that can give high classification accuracy. Since evaluation follows classification, a large number of features 
need a long computation time. The embedded method is very similar to the wrapper method; but in an embedded 
method, features are selected concurrently with classification model construction and hence uses less computation time 
than a wrapper method. Since both wrapper and embedded methods use classification to select a subset of features, they 
provide good feature learning and give good prediction accuracy with a training dataset. However, this good accuracy 
may come at the expense of over-fitting. 
 
Wrapper methods have been widely used for feature selection, especially various nature-inspired algorithms, for 
example, used by Zang, Zhang and Hapeshi [5] with the objectives of increasing the efficiency and reducing the 
prediction error. Chuang et al modified a particle swarm optimization technique to design an Improved Binary Particle 
Swarm Optimization (IBPSO) and for selecting gene expressions in combination with a k-Nearest Neighbors classifier. 
IBPSO avoided getting trapped in local optima and gave good classification results [6]. Huang [7] designed a new 
classifier model, a hybrid Ant Colony Optimization based classifier model, that integrated Ant Colony Optimization 
techniques with SVM in order to improve classification accuracy by using a small number of discriminating features. 
There are also several studies used nature-inspired techniques for bioinformatics: Nakamura et al’s bat algorithm [8], 
Rodrigues et al’s Cuckoo search algorithm [9] and Flower Pollination algorithm [10] that proposed using Bat algorithm, 
in combination with an optimum-path forest classifier. GA has been applied for pattern recognition [11, 12], 
investigation of protein function [13] and SNP selection [14]. Peng et al [15] and Li et al [16, 17] used GA with SVM in 
bioinformatics. Lei [18] combined GA with IG to achieve better classification accuracy, than each of the technique 
alone. 
 
Since the swine data used here, consisted of a large number of SNPs, the number of swine samples was small and it was 
expected that only a few SNPs would affect the classification, we aimed to find and select the smallest number of SNPs, 
that led to effective classification. Here, we selected features with a hybrid IG+GA, a fast filter method combined with a 
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random and selective wrapper method, which includes an SNP selection step based on the frequency of appearances in 
randomly-seeded datasets constructed from the whole dataset. We hypothesized that the most relevant SNPs should be 
the ones that appear in most of the randomly-seeded datasets. The rest of the paper is arranged as follows: section 2.0 
describes the methodology, including feature selection and classification techniques; section 3.0 describes the dataset 
used; section 4.0 describes the experimental setup; section 5.0 describes and discusses the results and we conclude in 
section 6.0. 
 
2.0 METHODOLOGY 

 
In this section describes the conceptual framework and feature selection by a hybrid IG and GA (IG+GA) technique. 
This technique assumes that many features of the full feature set are not significant in constructing a learning model, but 
waste computer resources and lengthen computation time. The technique was intended to select the minimum number of 
significant features, that can classify SNPs accurately. IG, GA, IG+GA, SVM (the classifier) are explained briefly, along 
with feature selection according to their frequency of appearance in randomly-seeded datasets. 
 
2.1 Information gain 

 
IG is a feature selection technique of in filter method class [3, 4, 19], that selects features according to ranked index 
weights, calculated from the relationships between features. It is a common feature reduction technique, that can boost 
classification capability of any classifiers. It has been applied to applications, such as feature selection in text, DNA 
microarrays and SNPs. Cho and Won [20] used it to select features in a DNA microarray: they showed that IG was the 
best among all the techniques tested, including Multi-layer Perceptron and k-Nearest Neighbors. Jirapech-Umpai and 
Aitken [21] used six filter methods to rank features and three cut-point determination methods to find a good cut-point: 
they found that IG was the best feature ranking method and Z-score analysis was the best cut-point determination 
method. Using these two methods in combination, the microarray was classified with the highest accuracy.  
 
The IG value of each feature was calculated from the difference between the initial and current information entropy of 
the feature. Entropy is a measure of unpredictability of the state, or equivalently, of its average information content. An 
information entropy signifies the difference between data points: a higher entropy means that the data points are very 
much different, while a lower entropy means that the data points were not very different. Therefore, a feature with a high 
IG value is a good feature. Calculation of IG value is expressed in Eq. (1) below, 
 
 𝐼𝐼𝐼𝐼(𝑇𝑇, 𝑖𝑖) = 𝐻𝐻(𝑇𝑇) −∑ |{𝒙𝒙∈𝑇𝑇|𝑥𝑥𝑖𝑖=𝑣𝑣}|

|𝑇𝑇|
∙ 𝐻𝐻({𝒙𝒙 ∈ 𝑇𝑇|𝑥𝑥𝑖𝑖 = 𝑣𝑣})𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑖𝑖) ,  (1) 

 
and H is information entropy that can be calculated by 
 
 𝐻𝐻(𝑇𝑇) = −∑ 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙2𝑥𝑥∈𝒙𝒙 𝑝𝑝(𝑥𝑥) (2) 
 
where T is training dataset with samples in the form of (𝒙𝒙,𝑦𝑦) = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 ,𝑦𝑦}where 𝑥𝑥𝑖𝑖is the feature at the 
present position i of the sample and y is the corresponding class label of the x sample; and p(x) is the proportion 
of the number of elements in sample x to the number of elements in set T. 
 
IG can rank features according to their significance but cannot determine the optimum number of features for 
classification. We used an elbow method to reliably determine the cut-point, i.e. the number of highest-ranked features 
sorted by IG, that would be optimum for classification. The elbow method is a method of interpretation and validation of 
consistency within cluster analysis designed to help finding the appropriate number of clusters in a dataset. 
 
2.2 Genetic algorithm 

 
GAs are nature-inspired algorithms. As a feature selection technique, they fall into the wrapper method category. GAs 
mimic evolution in nature and genetic inheritance in its search for an optimum solution. It crosses over solutions, then 
selects better solutions, represented by chromosomes, that contain several genes. In GAs, chromosomes are in the form 
of strings of alphabets or binary bits. In recent years, GAs have been used for reducing the number of data dimensions in 
pattern recognition [11, 12]. As mentioned above, for feature selection process, too many features, but too small a 
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number of samples, will degrade machine learning performance. Many studies on feature selection have used various 
techniques to solve this issue [5, 6, 7]. GAs have been widely used for feature selection [15, 16, 17]. They were 
combined with SVM and used in a bioinformatic application - classification of array-based multiclass tumor [15]. They 
have also been used for predicting protein function [13], where a GA was used to select some variables before they were 
used further by SVM. Their prediction results were compared to those of Borro et al. [22] and found to be clearly better, 
demonstrating that using a GA to select a small number of significant variables was more effective, than Borro et al.’s 
technique. İlhan et al. [23] used a GA to find the optimum parameters, including hyper-parameters, for SVM operation.  
A GA specifies the number of chromosomes with their gene components in the population, specifies their fitness 
function for the evolution process, generates a random initial population, applies genetic operators–selection, crossover, 
and mutation–to the population, then repeats these steps to form a new population, until the stopping criterion is met. 
Fig. 1 shows the steps of a GA - specifically for feature selection. These steps are explained in detail below. 
 

 
 

Fig. 1: Steps for a GA in operation with SVM 
 

1. Generate an initial random population of chromosomes, that are binary bit strings: Each chromosome s consists 
of n genes s, where 𝒔𝒔 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}. Fig. 2 shows an example of chromosomes represented by bit strings. 𝑠𝑠1  

and 𝑠𝑠2  are two chromosomes, each containing 10 binary bit strings of genes (n = 10), that represent 10 features in 
the sense that a binary 1 at a position in the string means that the corresponding feature in the training dataset is 
selected for fitness function evaluation to find out which chromosome is the best one. In this study, the fitness 
function was accuracy. In Fig. 2, 𝑠𝑠1  and 𝑠𝑠2   have three and five selected SNPs, respectively. 
  

2. Select to-be-reproduced chromosomes by roulette wheel method: This method selects a chromosome randomly, 
based on its selection probability, which is the ratio of its fitness to the total fitness of the entire population. 

 
3. Crossover of two chromosomes: exchanges some of their genes to form new chromosomes, that may be better 

than the original ones. Crossover is a multi-point crossover, that starts by generating random numbers, that 
specify the positions and blocks of genes that will be crossed over.  
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4. Mutation of the cross-over chromosomes: mutation increases the diversity of a chromosome population. Even 
though the selection and crossover operators may give better solutions, the solutions are still based on the original 
chromosomes and so may not be diverse enough to reach a global optimum. Mutation can generate diverse 
solutions, that may not be obtainable from information stored in the parent chromosomes. The first mutation 
method used in this study was bit-flip mutation - used in the original GA formulation. Bit flipping is based on a 
mutation probability, Pm. For instance, Pm = 0.01 implies that the bit representing the gene has a 1 % chance to 
flip from 0 to 1 or 1 to 0. 

 
 

Fig. 2: Example of binary bit strings of genes that make up two chromosomes 
 

However, it was found that after mutation, the number of 1s in each mutated chromosome was still too high, 50 % of all 
genes, and this could generate too many eligible features. To obtain a smaller number of optimum features, we used a 
higher probability for 1 to 0 bit-flipping than that for 0 to 1 bit-flipping, as shown in Eq. (3) [14], which was shown to be 
successful. For example, Pm = 0.1 implies that the bit representing that gene has a 10 % chance to flip from 0 to 1 and 1 
to 0 was much higher at 90 %. 
 

 𝑠𝑠(𝑖𝑖) = �1, 𝑟𝑟 ≤ 𝑃𝑃𝑚𝑚
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 (3) 

 
Eq. 3 includes the conditions for flipping existing bits, where 𝑠𝑠(𝑖𝑖) is the flipped bit at i, and r is a random number 
∈ [0, 1] 
 
2.3 Information gain and genetic algorithm hybrid 

 
Lei [18] used IG+GA for text classification. Information gain calculated how many terms can be used for the 
classification of information in order to measure the importance of the lexical items for classification. Subsequently, GA 
was used to select the most suitable features.  
 
GA alone could not reduce the number of features sufficiently in the SNP-feature-reduction tests that we ran. Even 
though IG+GA could reduce the number of features to a minimum, those features did not result in accurate predictions 
due to an insufficient number of features. Consequently, we chose to employ a different approach for combining IG+GA 
for our classification task, where IG was used to rank features according to their significance. An elbow method was 
used to find a cut-point for inclusion of only some of the features obtained from IG, which also specified the number of 
genes in each chromosome in subsequent Proposed GA. GA was used to further reduce the number of these features 
down to a suitable number by adjusting the mutation probabilities for 0 to 1 bit-flipping and 1 to 0 bit-flipping 
separately. A suitable number of features here means that they provided good classification accuracy in test runs. 
 
2.4 Support vector machine 

 
SVM is a machine learning technique for the supervised learning category. It was developed to solve binary 
classification problems. The main concept of this technique is hyperplane construction. In SVM, a hyperplane is a 
decision plane for dividing data into two classes. An optimum hyperplane has the largest margin between the two 
classes. The data on the margin are called support vectors. SVM can have one of many kernel functions such as linear, 
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radial basis function (RBF), and polynomial kernels. These different functions map data from input space to feature 
space with higher dimensions. Each kernel function is appropriate for a different kind of problem: the function used does 
not always need to be linear, depending on the type and complexity of the input data. SVM has been applied as a 
classifier in several research studies [15, 16, 17]. In this study, linear and RBF were tested, and their performances 
compared. For the test, C is a hyperparameter of SVM that balances training error and the model’s complexity. 
Particularly for the RBF kernel, a parameter 𝛾𝛾 was tuned to get the optimal hyperplane. The optimal parameters were 
validated using a five-fold cross-validation procedure. The mathematical expressions for the linear kernel function and 
RBF are in Eq. (4) and (5), respectively. 
 
 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝑥𝑥𝑇𝑇 ∙ 𝑥𝑥′ (4) 
 
 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = exp (−𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′‖2) (5) 
 
where 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) is a kernel function; 𝑥𝑥 and 𝑥𝑥′ are data samples; the term ‖𝑥𝑥 − 𝑥𝑥′‖2 is a squared Euclidean distance 
between 𝑥𝑥 and 𝑥𝑥′; and γ is a non-negative value. 
 
A diagram of the feature selection by our proposed approach is shown in Fig. 3. In this approach, we also compared the 
effectiveness of IG and GA alone as well as of IG+GA. Accordingly, their uses are as shown in the diagram. As 
mentioned in the section above, we introduced different flipping probabilities of 1 and 0 into GA. Therefore, from now 
on we will call this GA the “Proposed GA”. Please note that both GA and Proposed GA were used individually and in 
combination with IG. This is not shown explicitly in the diagram. 
 
As can be seen in the diagram, pre-processed data were initially divided into two sets for this experiment: training and 
test sets. The training dataset was used in feature selection. In our experimental framework, three feature selection 
methods were evaluated: filter, wrapper, and a combination of filter and wrapper. 
 

1. The filter method used IG for ranking the level of significance for each feature, while an elbow method was used 
to find the cut point for selection of the optimal number of features. 
 

2. The wrapper method used GA for selection of an optimal subset of features for classification. To find this optimal 
subset, GA needed to send a preliminary subset of features into the classification process used for training, testing 
to find optimal parameters and evaluating the SVM model by five-fold cross validation. The best subset of 
features gave the highest prediction accuracy. 

 
3. The filter plus wrapper combination method performed the filter and wrapper methods in that order. The cut point 

from the elbow method in the filter method would set the number of genes in each chromosome to be performed 
in GA. 
 

In the development of our approach, we made an assumption that, from all 10 randomly-seeded datasets, it was likely 
that some features from every dataset would be repeatedly selected. Thus, the high frequency of occurrences in the 
selected features meant that they were the most significant features. Therefore, we introduced a feature frequency 
selection (FFS) step after the selected features from IG, IG+GA, and IG+Proposed GA were obtained in order to select 
only a small number of the most significant features. Briefly, FFS works to find the previously selected features that 
have the highest frequency of occurrences among randomly-seeded datasets. In this study, FFS was performed 
separately on the features selected by each of these kernels since IG+GA+FFS and IG+Proposed GA+FFS used both 
linear and RBF kernels. The newly selected features from both kernels were then combined and the same ones were 
taken as the finally-selected features, as shown in Fig. 4. 
 
After features were selected, they were used in a training step, through five-fold cross-validation, to find the optimal 
parameters for constructing the optimal model. Specifically, for RBF kernel in SVM, the grid search method is used to 
find the best C and 𝛾𝛾 for the SVM model. The optimal parameters are inserted into the prediction step together with the 
test dataset. The output is classification accuracy. 
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3.0 DATASET 
 

All swine data used in this study was from the Porcine Colonization of the Americas Dataset [1]. It consists of data from 
11 village pig breeds including the Creole, Moura, Yucatan, Ossabaw pig, Monterio, and Guinea hog, which are raised 
in the United States of America, as well as 10 outgroup pig breeds including Jiangquhai, Jinhua, Meishan, Xiang pig, 
Duroc, Landrace, and LargeWhite. The dataset contains data from 389 pig samples and 46,259 SNPs, which was 
gleaned by a PLINK method from 62,163 SNPs. Some of the breeds presented in the dataset had too few samples 
representing them. Consequently, those breeds were excluded from the study. In total, the dataset that we used in this 
study consisted of data from 356 samples of 21 breeds, as shown in Table 1, and a total of 16,579 SNPs. All data were 
put through data cleansing according to the principle of population and sample identification. However, there were some 
missing values. Thus, they were estimated by a single imputation method. The estimated values were modes of the entire 
individual feature data. 

 
 

Fig. 3: Experimental framework of the feature selection for classification 
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Fig. 4: Application of FFS for combining and selecting features from linear and RBF kernels 
 

Table 1: An example of swine data in the dataset used in this study 
 

Breed  Location Number of samples 

Creole 
Alto Baudo-Colombia, Baja Verapaz-Guatemala, Granma Cuba, 
Guanacaste, Alajuela-Costa Rica, Loja-Ecuador, Misiones 
Argentina, Pinar del Rio-Cuba, Titicaca area-Peru 

90 

Piau Bahia-Brazil 9 
Zungo Cerete-Colombia 10 
Jiangquhai China 11 
Jinhua China 16 
Meishan China 16 
Xiang pig China 11 
Moura Concordia-Brazil 9 
Duroc Denmark, Holland, USA 20 
Landrace Denmark, Holland, USA 20 
LargeWhite Denmark, Holland, USA 20 
Semi- feral Formosa-Argentina 10 
Wild boar Hungary, Poland, Tunisia 13 
Yucatan Indiana-USA 10 
Hairless Mexico 9 
Cuino Nayarit-Maxico 7 
Ossabaw pig Ossabaw island-USA 7 
Monteiro Pocone-Brazil, Portugal 24 
Iberian Spain 15 
Hampshire UK, USA 14 
Guinea hog USA 15 

 
 

4.0 EXPERIMENTAL SETUP 
 
The entire swine dataset was used to construct 10 randomly-seeded datasets. This large number of randomly-seeded 
datasets was used to make the results of this experiment statistically valid and reliable. Each randomly-seeded dataset 
was partitioned into a training dataset (80 %) and a testing dataset (20 %). The parameter settings of GA, Proposed GA, 
IG+GA, and IG+Proposed GA were as follows: population size of 30 chromosomes; crossover probability of 0.8; Pm 

ranging from 0.1 to 0.9; the number of genes of 16,579 for GA and Proposed GA; the number of generations of 10; C 
ranging from 10-6 to 106; and 𝛾𝛾 of RBF ranging from 10-10 to 1010. In FFS for IG, IG+GA, and IG+Proposed GA, 
features with frequency 80 % and higher were selected, i.e. features that occurred more than or equal to eight times in 
the 10 randomly-seeded datasets.  
 
The reason that we set the population size to a small number of 30 was that a higher number would result in a large 
number of features which would have wasted significant amount of computational time. In addition, the reason that we 
set the number of generations to 10 was that the preliminary trial runs showed that GA met its stop criteria within 10 
generations. Thus, setting it to a higher number was not likely to increase the accuracy in any way. The full experimental 
results are reported in Section 5.0 below. 
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5.0 EXPERIMENTAL RESULTS AND DISCUSSION 
 
In this section the result of SNPs selection for classification are presented and discussed. Besides presenting the average 
accuracy of classification by the proposed approach and the numbers of finally–selected SNPs by every method used in 
this approach, we also present the average accuracy of classification from using all the features for comparison. All of 
these results are displayed in Fig. 5 and 6. This section also presents the statistical results of ANOVA analysis of the 
prediction accuracy achieved by every method and the results of principal component analysis (PCA). 
 
In our Proposed GA, mutation probability refers to the frequency of new mutations per generation in an organism or a 
population. It was observed that from the range of Pm (0.1-0.9) set for running GA, Proposed GA, IG+GA, and 
IG+Proposed GA, the values of the best-tuned Pm for those methods were 0.8, 0.2, 0.5, and 0.8, respectively, as shown in 
Fig. 5, for each value of the Pm tested, GA, IG+GA, and IG+Proposed GA gave nearly the same number of selected 
SNPs, as shown in Fig. 5a, 5c and 5d, so the optimal value of Pm was considered to be the value that provided the 
highest classification accuracy. On the other hand, for Proposed GA, the number of selected SNPs obtained from using 
different values of Pm was not nearly the same as shown in Fig. 5b, but the number of selected SNPs from Pm of 0.1 and 
0.2 was the lowest and nearly the same. Classification accuracy from Pm of 0.2 was higher than that from Pm of 0.1, so it 
was used as the optimal Pm for Proposed GA. To conclude, it can be seen that for GA and IG+GA that used the original 
type of bit-flip probability, no matter what Pm value was used, the total number of selected SNPs was large, about 50 % 
of search space. For Proposed GA and IG+Proposed GA that used our proposed type of bit-flip probability, however, the 
total number of selected SNPs was smaller, though the optimum number depended on the size of the search space; a 
large search space needed a smaller value for Pm, but a small search space needed a larger value for Pm. The results 
presented here are from using these tuned values of Pm with the respective methods. 
 
The highest levels of classification accuracy from the training step of GA, Proposed GA, IG+GA and IG+Proposed GA 
are shown in Fig. 8. It can be seen that the number of generations at the stop of a run for the first set of randomly-seeded 
dataset of each tested method was not over 10. In addition, IG+GA and IG+Proposed GA gave better levels of accuracy 
than GA and Proposed GA alone. The average number of generations at the stop of runs for all 10 randomly-seeded 
datasets of each tested method was between 3 and 7 generations, as shown in Fig. 9. 
 
5.1 Classification accuracy and number of selected SNPs 
 
The resulting average classification accuracies and the number of selected SNPs are summarized in Table 2. It can be 
seen that all of the methods used were competitive. The best method was IG+Proposed GA+FFS, which provided a 
classification accuracy of 94.62 % and 94.80 % for linear and RBF kernels, respectively, showing that the proposed 
approach was able to achieve a better classification accuracy to that when using the entire features from the dataset 
(92.46 %) while using far fewer features–only 0.86 % of SNPs. The worst method was IG+GA+FFS, which exhibited a 
classification accuracy of 76.62 % for linear kernel and 77.08 % for RBF kernel, markedly lower than any other 
methods. The reason for this might be that it provided too small a number of SNPs (21 SNPs) to be able to make an 
effective classification. It can also be seen that the number of SNPs selected by wrapper methods, GA and Proposed GA, 
were still too high, 49.70 % and 7.09 % in linear case, respectively. When a filter method, IG, was used in combination 
with the wrapper method, the number of selected SNPs reduced dramatically. For instance, IG+GA and IG+Proposed 
GA were able to reduce the number of features to 1.00 % and 1.44 % of the entire features in linear case, while IG alone 
was able to reduce it to 1.98 %. However, using too small a number of SNPs could lead to drop in performance, as in the 
IG+GA case. When FFS was added, the numbers of selected SNPs were further reduced: IG+FFS, IG+GA+FFS, and 
IG+Proposed GA+FFS were able to reduce the number of selected SNPs to 1.22 %, 0.31 %, and 0.86 % of the entire 
SNPs in the dataset, respectively. Fortunately, accuracy could be improved in most cases, except for IG+GA+FSS case–
using too small a number of features (21 SNPs). The best performer was IG+Proposed GA+FFS, which was able to 
select only 142 SNPs from the total of 16,579 SNPs. 
 
As mentioned previously, using features selected from either linear kernel or RBF kernel alone did not result in good 
classification accuracy from IG+GA+FFS and IG+Proposed GA+FFS, as shown in Fig. 6. IG+GA+FFS and 
IG+Proposed GA+FFS could achieve 59.23 % and 92.62 % accuracy with a set of features selected based on linear 
kernel, respectively, and at 62.54 % and 92.46 % accuracy based on RBF kernel, respectively. Thus, we used the unique 
features gleaned from the features selected by both kernels, which resulted in much better accuracy (76.62 % and 94.62 
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% for using IG+GA+FFS and IG+Proposed GA+FFS for using linear kernel, respectively, and 77.08 %, 94.80 % for 
using RBF kernel, respectively). It is clear that combining more relevant features led to better performance. 
 
5.2 Results from analysis of variance (ANOVA) 
 
One-Way ANOVA was used to test the hypotheses in terms of whether or not the average classification accuracies from 
different methods used were statistically different. In general, one-way ANOVA is used to compare more than two 
means and whether or not at least a pair of means is different. If so, a multiple comparison test will be used to find which 
pairs are significantly different. 
 
As for the results of a one-way ANOVA analysis for the classification accuracies achieved by all methods, it was found  
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Fig. 5: Classification accuracies and numbers of selected SNPs obtained from using a range of Pm values 
 
 
that at least one pair of feature selection methods gave significantly different accuracies at p ≤ 0.05. Thus, multiple 
comparison was performed. The results from the multiple comparison show that the classification accuracies achieved 
by IG+GA+FFS with both linear and RBF kernels were significantly worse than those achieved by all the other 
methods. In addition, the accuracy achieved by IG+Proposed GA+FFS with linear kernel was statistically and 
significantly better than those achieved by IG+GA. As seen in Table 3, IG+Proposed GA+FFS was able to reduce the 
number of selected features to 0.86 %, though these differences were slight (competitive to the others), 
 
Table 2: Average classification accuracy and selected SNPs achieved by each method of the proposed approach (the best 
values are in bold). It is noted that the numbers of SNPs used in methods with FFS are constants 
 

Method Accuracy (%) #SNP 
Linear RBF Linear RBF 

Entire SNPs  92.46 ± 1.98 92.46 ± 1.98 16,579.00 
(100 %) 

16,579.00 
(100 %) 

GA  92.92 ± 2.08 92.62 ± 2.03 8,239.80 ± 73.84 
(49.70 %) 

8,245.10 ± 56.99 
(49.73 %) 

Proposed GA  91.69 ± 3.18 92.15 ± 2.85 1,176.50 ± 573.61 
(7.09 %) 

1,113.10 ± 488.32 
(6.71 %) 

IG  92.15 ± 2.11 92.15 ± 2.11 329.00 ± 87.73 
(1.98 %) 

329.00 ± 87.73 
(1.98 %) 

IG+GA  90.31 ± 2.81 91.85 ± 2.18 165.60 ± 45.47 
(1.00 %) 

165.30 ± 5.12 
(1.00 %) 

IG+Proposed GA  92.15 ± 2.76 91.85 ± 2.91 238.10 ± 6.71 
(1.44 %) 

241.30 ± 9.52 
(1.46 %) 

IG+FFS  94.15 ± 2.27 94.00 ± 2.34 202.00 
(1.22 %) 

202.00 
(1.22 %) 

IG+GA+FFS  76.62 ± 4.49 77.08 ± 4.61 21.00 
(0.13 %) 

21.00 
(0.13 %) 

IG+Proposed GA+FFS  94.62 ± 2.21 94.80 ± 2.08 142.00 
(0.86 %) 

142.00 
(0.86 %) 
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Fig. 6: Classification accuracy and number of SNPs after being processed by FFS with single set of features and 
combined set of features (M1 is IG+GA+FFS; M2 is IG+Proposed GA+FFS) 

 
5.3 Results from PCA analysis 
 
After 142 of the most significant SNPs were selected, they were used to perform an analysis of the relationship between 
swine breeds by PCA. In general, principal component analysis (PCA) is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations of possibly correlated variables into a set of values for linearly 
uncorrelated variables, called principal components (PC). This transformation is defined in such a way that the first 
principal component (PC1) has the largest possible variance. We performed PCA on both the entire SNP dataset and on 
the set of selected SNPs from our approach and compared the results. 
 
Table 3: Results of pairwise comparison among all the methods from the multiple comparison analysis (the significantly 

different accuracies are in bold) 
 

Paired Method 1 
 

Paired Method 2 
 

Linear kernel RBF kernel 

Mean 
difference 

 

p-value 
 
 

95% confidence 
interval for the 
mean difference 

Mean 
difference 
 

p-value 
 

95% confidence 
interval for the 
mean difference 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Entire SNPs  GA  -0.46 1.00 -4.45 3.52 -0.15 1.00 -3.98 3.67 
Entire SNPs  Proposed GA  0.77 1.00 -3.21 4.75 0.31 1.00 -3.52 4.13 
Entire SNPs  IG  0.31 1.00 -3.68 4.29 0.31 1.00 -3.52 4.13 
Entire SNPs  IG+GA  2.15 0.73 -1.83 6.14 0.62 1.00 -3.21 4.44 
Entire SNPs  IG+Proposed GA  0.31 1.00 -3.68 4.29 0.62 1.00 -3.21 4.44 
Entire SNPs  IG+FFS  -1.69 0.91 -5.68 2.29 -1.54 0.93 -5.37 2.29 
Entire SNPs  IG+GA+FFS  15.85 0.00 11.86 19.83 15.38 0.00 11.56 19.21 
Entire SNPs  IG+Proposed GA+FFS  -2.15 0.73 -6.14 1.83 -2.31 0.60 -6.13 1.52 
GA  Proposed GA  1.23 0.99 -2.75 5.21 0.46 1.00 -3.37 4.29 
GA  IG  0.77 1.00 -3.21 4.75 0.46 1.00 -3.37 4.29 
GA  IG+GA  2.62 0.49 -1.37 6.60 0.77 1.00 -3.06 4.60 
GA  IG+Proposed GA  0.77 1.00 -3.21 4.75 0.77 1.00 -3.06 4.60 
GA  IG+FFS  -1.23 0.99 -5.21 2.75 -1.38 0.96 -5.21 2.44 
GA  IG+GA+FFS  16.31 0.00 12.32 20.29 15.54 0.00 11.71 19.37 
GA  IG+Proposed GA+FFS  -1.69 0.91 -5.68 2.29 -2.15 0.69 -5.98 1.67 
Proposed GA  IG  -0.46 1.00 -4.45 3.52 0.00 1.00 -3.83 3.83 
Proposed GA  IG+GA  1.38 0.97 -2.60 5.37 0.31 1.00 -3.52 4.13 
Proposed GA  IG+Proposed GA  -0.46 1.00 -4.45 3.52 0.31 1.00 -3.52 4.13 
Proposed GA  IG+FFS  -2.46 0.57 -6.45 1.52 -1.85 0.83 -5.67 1.98 
Proposed GA  IG+GA+FFS  15.08 0.00 11.09 19.06 15.08 0.00 11.25 18.90 
Proposed GA  IG+Proposed GA+FFS  -2.92 0.33 -6.91 1.06 -2.62 0.43 -6.44 1.21 
IG  IG+GA  1.85 0.86 -2.14 5.83 0.31 1.00 -3.52 4.13 
IG  IG+Proposed GA  0.00 1.00 -3.98 3.98 0.31 1.00 -3.52 4.13 
IG  IG+FFS  -2.00 0.80 -5.98 1.98 -1.85 0.83 -5.67 1.98 
IG  IG+GA+FFS  15.54 0.00 11.55 19.52 15.08 0.00 11.25 18.90 
IG  IG+Proposed GA+FFS  -2.46 0.57 -6.45 1.52 -2.62 0.43 -6.44 1.21 
IG+GA  IG+Proposed GA  -1.85 0.86 -5.83 2.14 0.00 1.00 -3.83 3.83 
IG+GA  IG+FFS  -3.85 0.07 -7.83 0.14 -2.15 0.69 -5.98 1.67 
IG+GA  IG+GA+FFS  13.69 0.00 9.71 17.68 14.77 0.00 10.94 18.60 
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IG+GA  IG+Proposed GA+FFS  -4.31 0.02 -8.29 -0.32 -2.92 0.28 -6.75 0.90 
IG+Proposed GA  IG+FFS  -2.00 0.80 -5.98 1.98 -2.15 0.69 -5.98 1.67 
IG+Proposed GA  IG+GA+FFS  15.54 0.00 11.55 19.52 14.77 0.00 10.94 18.60 
IG+Proposed GA  IG+Proposed GA+FFS  -2.46 0.57 -6.45 1.52 -2.92 0.28 -6.75 0.90 
IG+FFS  IG+GA+FFS  17.54 0.00 13.55 21.52 16.92 0.00 13.10 20.75 
IG+FFS  IG+Proposed GA+FFS  -0.46 1.00 -4.45 3.52 -0.77 1.00 -4.60 3.06 
IG+GA+FFS  IG+Proposed GA+FFS  -18.00 0.00 -21.98 -14.02 -17.69 0.00 -21.52 -13.87 

 
As is generally known, PC relates to the variance of data points in a dataset. PC1 is the most significant PC and PC2 is 
the second–most significant PC. Calculated from all SNPs in the dataset, when PC1 was plotted versus PC2 as in Fig. 7a, 
it can be seen that the data points representing each population of swine breed are closely grouped together, while those 
representing different populations of swine breeds are clearly separated: Chinese pigs (Blue), landrace (Yellow), 
LargeWhite (Orange), Moura (Black), and Duroc (Red). These results are quite similar to those from the PCA analysis 
reported in [1], which used 206 village pig samples from the American continent, including those from Canary Islands 
and Iberian Peninsula and 183 outgroup pigs from Iberian Peninsula, China, and some other global locations. Most 
samples were from the Iberian Peninsula. The total number of samples was 389, while the total number of SNPs was 
46,259. The conclusion was made that most European village pigs were genetically similar; Chinese pigs–Jiangquhai, 
Jinhua, Meishan, and Xiang pigs–were distinctly dissimilar to breeds from other global locations, while Landrace and 
LargeWhite were also genetically dissimilar to breeds from other global locations, but more similar to Asian pigs than to 
wild boars and Iberian. Lastly, Duroc was also genetically and distinctly different from other breeds. In this study, the 
dataset that we used had a smaller number of samples (356), as mentioned in Section 3.0, and the number of selected 
SNPs used in the analysis was also much smaller (142). However, the PCA analysis results achieved by the proposed 
approach, as shown in Fig. 7b, are still nearly the same as the PCA results achieved using the entire SNPs in the dataset 
as well as the PCA results from [1]: namely, the data points for Landrace, LargeWhite, and Moura were clearly separate 
from the data points for other breeds. Most distinctly separate from those of other breeds were data points for Duroc and 
Chinese pigs. These results demonstrate that the proposed approach is valid while providing a much higher 
computational efficiency than using the entire SNPs from the dataset. 
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Fig. 7: Conventional PCA projection of SNPs in the dataset 
 

 
 

Fig. 8: The classification accuracy from each generation of the first randomly-seeded dataset 
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Fig. 9: The number of generations at the stop of runs of all 10 randomly-seeded datasets of each tested method 
 
6.0 CONCLUSION 
 
A small number of usable Porcine SNPs for swine classification can be suitably selected by using feature selection and 
classification techniques. This study employed the IG, GA, Proposed GA, IG+GA, IG+Proposed GA, IG+FFS, 
IG+GA+FFS, and IG+Proposed GA+FFS methods to find a small number of suitable SNPs and SVM for classification. 
It was found that IG+Proposed GA+FFS was able to reduce the number of suitable SNPs to 0.86 % of the total number 
of SNPs in the dataset used while providing a high classification accuracy of 94.80 %, which was higher than those 
achieved by other methods. Compared to classification results reported in pervious literature, the results from the 
proposed approach were comparable, demonstrating the validity of the approach that also provides a much higher 
computational efficiency. Future work should determine the genes that are related to these selected SNPs, including 
finding their biological pathway and determining the gene ontology annotation that relates to the genes. The information 
gained from such future work would be very useful in the biology field. 
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