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ABSTRACT   

This work proposes the new methodology for the vehicular network with fuzzy time windows. The Fuzzy technique is 
applied to produce an initial population and then the evolutionary algorithm is employed to improve the solution. In 
this work, the inter-route crossover, intra-route mutation, elitism strategy, and onlooker bee probability selection 
method were enhanced in the original processes of the evolutionary algorithm. The proposed algorithm is tested on 
56 datasets of Solomon. The results from the proposed algorithm are shown in comparison with other algorithms in 
the literature. The findings from the computational results are very inspiring, it shows that the algorithm is very 
competitive. Comparing with the algorithm in the literature, the proposed algorithm obtains the best solution in 
terms of the coefficient of variation values for almost 40 instances from the 56 problem instances. In addition, the 
information regarding the p-value was resolved by the Wilcoxon signed-rank test for the considered testing 
instances that display statistically superior performance at the 95% significance level (α = 0.05) on comparing 
algorithms. 

Keywords: vehicle routing problem; fuzzy membership function; route construction. 

1.0  INTRODUCTION 

Transportation is an important section in business and organizations. Efficient transportation systems provide 
economic and social opportunities and benefits. Transportation costs could be desired as a significant matter in 
maintaining national expense in many countries such as the United Kingdom, France, and Denmark [1, 2]. 
Moreover, its cost resulted in an increasing price for goods at 70% [3,4,5]. On the economic level, [6] confirmed 
that it accounts from 6% to 12% of the GDP in many developed countries. In addition, they pointed out that 10%-
15% of the household expenses are related to the transportation cost on average, while it accounts for the cost of 
each output unit in manufacturing around 4%. In 1989, 76% of the products have been transferred from places to 
places by vehicle transportation [7] which confirms the significance of the transportation problem. 

The vehicle routing problems (VRP) is a combinatorial optimization problem that involves the optimization cost of 
transportation. It is an NP-hard problem which challenged researchers in the world and has been widely studied. The 
problem aims to design efficient routes served by the number of vehicles in order to satisfy customer satisfaction. 
Each customer will at by only one vehicle where each is performed by a vehicle that starts and ends at the depot(s). 
The summation of customers demand in each route cannot exceed vehicle capacity, a set of operational constraints 
are satisfied, and the total cost is minimized. After [8] introduced the problem in 1959, the problem has been 
attracting researchers to study the issue extensively. In the real-world problems, there are many variants of the VRP 
incorporating constraints and conditions. The Capacitated Vehicle Routing Problem (CVRP) within the vehicles has 
a limited freight capacity, and with regards to the Vehicle Routing Problem with Time Windows (VRPTW) the time 
interval of each customer is specified: these are two important examples of the problem. However, Cordeau et al. [9] 
claim that this class of the problem has been the most intriguing case of VRP. Optimization objective of VRPTW 
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could be travel distance, number of route, and travel time considered for minimization. Some of the significant 
applications of the VRPTW include distribution products, delivering goods and service to customers, logistics 
service, and private and public transportation. The vehicle routing problem with time windows was chosen for 
investigation because it has been the most favorable class of the VRP [9]. In addition, the basic distribution 
management problem of the VRPTW can be used to model many real-world problems [10] and building up interest 
in this disciplinary area for further study.  

Many techniques have been brought to solve the vehicle routing problems from recent conceptual practice in time. 
Exact algorithms have been proposed to solve the problem at the earliest time. The methods can solve only the small 
size problem while the computational time grows exponentially when the problem size has increased [11], which is 
a drawback of the algorithm. Heuristic methods have been proposed to figure out the drawback of the exact method, 
they can solve the large scales problems efficiently in an acceptable time. However, these methods often produce 
poor robustness since they could be sensitive to the datasets given. In some heuristic methods, the accuracy of 
training data and the coverage of data distribution can significantly affect the performance of the algorithms during 
the training data [12]. The drawback becomes apparently noticeable when the search space is larger and/or the 
dataset is more complexing in its scheme. The methods suffer from slow rates of convergence along with its 
limitation in the search space cover. Metaheuristics have been applied to copes with these drawbacks, they have 
been proposed as an idea to escape from the trap of local optimality, treat larger instances, and applied in different 
domains. A metaheuristic is a class of computational approaches, optimizing a given problem by iteratively 
improving a candidate solution via a given measure of quality. The solution of metaheuristics depends on the set of 
random variables generated because many of them implement some form of stochastic optimization. The algorithms 
are approximate and usually non-deterministic [13] and do not guarantee on finding an optimal solution [14]. 
Evolutionary algorithm (EA) inspired by the natural process selection and swarm intelligent inspired by natural 
behavior are effective algorithm on solving the VRP. The algorithms and the extension of them have been brought 
to solve the problem efficiently. The artificial bee colony (ABC) algorithm is one effective algorithm for solving the 
VRP. The enhanced ABC and hybrid ABC algorithm with other heuristic and metaheuristics e.g. BCiA by [15], 
ABC-T by [16] and Tabu-ABC by [17] are adopted to solve the problem efficiently. However, the exploration of the 
algorithm works well but the exploitation is poor. A massive number of hybrid optimization methods have been 
proposed to solve the combinatorial optimization problem in the last few years [18, 19]. The hybrid genetic 
algorithm and other heuristics and metaheuristics by [20, 21, 22] have been proposed to solve the VRP effectively. 
[17] developed a hybrid algorithm by combining an evolutionary local search with the recombination method for the 
VRP with three-dimensional loading constraints. In 2006, [23] proposed a hybrid multi-objective evolutionary 
algorithm (HMOEA) which provides outstanding performance on the VRPTW. Although the previous review 
algorithms have shown great success in solving the problem, the algorithms are sensitive to value and precision. 

In this work, an evolutionary algorithm is enhanced by intra-route crossover, intra-route mutation, elitism strategy, 
and onlooker bee probability selection method in order to minimize transportation costs. The fuzzy technique is 
applied to deal with uncertainty time windows in the initialization stage to produce the feasible population and then 
the enhanced evolutionary algorithm is used to improve the population. The remainder of this work is organized as 
followed: the vehicle routing problem with time windows description is explained in section 2. Relating algorithm 
approaches to the VRPTW is reviewed in section 3 and then the proposed method is described in section 4. In 
section 5, the computational results from the proposed algorithm are presented and discussed. Finally, the paper 
offers a conclusion in section 6.   

 
2.0  VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW) 

This part describes the problem description and equation in section 2.1 and Solomon’s benchmark dataset for the 
VRPTW is explained in section 2.2. 

2.1  Problem Description and Equation 

The VRPTW can be reviewed as a combination of vehicle routing and scheduling problem. A set of customers will be 
satisfied by a fleet of vehicles which start and end the service at the depot. Each customer will be served by a vehicle 
within their time windows in order to minimize the costs and total of customers demand in the route that does not 
exceed the maximum of vehicle capacity.  

The VRPTW is defined by [24] as follows: it is a complete graph ( , )G V E= . There is a set of vertices 

0 1{ , , , }nV v v v= … , 0v V∈ represents depot, N is a subset of vertices represents customers, 1{ , , }nN v v= … . The 
location of customer iv  represents by ( , )i ia b  and the representation location of the depot, 0v is 0 0( , )a b . For each 
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customer iv N∈ , there is a demand id , service time or unloading time it  and a time window [ , ]i ie l  where ie  is the 
earliest time to begin service and il  is the latest time. Accordingly, is  denotes the starting time service at customer iv , 
the vehicle must wait with the waiting time iw  if the arriving time at customer iv  before time ie  and it is not allowed 
to arrive after the latest time il . Each pair of customers, there is ijt  represents a time that takes to go from customer iv  
to jv . Customer iv  is served by a vehicle at the beginning time is  takes time it  to unload or pick up goods. At the 
depot, 0v V∈ , there are m  homogenous vehicles. Every vehicle starts and ends service to the customer with the 
specific quantity Q  at the depot. The objective of the VRP is to find a set of 1 2{ , , , }mK k k k= … routes which serve 
all customers by m  vehicles at the minimum cost. The cost can be the sum of travel distances, times, number of 
vehicles or other relevant factors of all routes. The overall distance is desired in this paper. The distance between a 
pair of customers ,i jv v N∈  is denoted by ijc  calculated by the Euclidean distance (1). 

2 2( ) ( )ij i j i ja a b bc = − + −       (1) 

The objective of the VRPTW is to minimize cost which is referred to as the distance. The objective function is shown 
as follows: 

Min 
1, 1

N
ij ij

i j
c x

= =
∑       (2) 

In (2), N customers are waiting to be served by a fleet of vehicles, ijc refer to distance between customer i  and 

customer , ( )j i j≠  and ijx  is a decision variable. ijx  is equal to 1 if there is a path between customer i  and 

customer j , otherwise ijx  is equal to zero.  

In VRPTW, there are m  vehicles at the depot  0v  to serve N  customers, 
1 1

 ,  0
m n

ijk
k j

x m for i
= =

≤ =∑∑ , each of them can 

be serviced in a route by their capacity Q  . In each route, each customer has their own demand id   and the demand of 

all customers in the route must not exceed the vehicle capacity 
1 0,

,  
n n

i ijk
i j j i

q x Q for k K
= = ≠

≤ ∈∑ ∑ . In the service, all 

vehicles start and end their routes at the depot, 
1 1

1
n n

ijk jik
j j

x x
= =

= =∑ ∑   0  for i and k K= ∈  and each customer is served 

by only one vehicle 
1 0,

1,  
m n

ijk
k j j i

x for i N
= = ≠

= ∈∑ ∑ , 
1 0,

1,  
m n

ijk
k i j i

x for j N
= = ≠

= ∈∑ ∑ . In addition, the summation of the arrival 

time at iv , the service time of iv , travel time ijv  and the waiting time at jv of each customer is not less than the 

earliest time window je  and not more than the latest time window jl , j i i ij j je s t t w l≤ + + + ≤ .  

2.2  Solomon Dataset 

The experiment is designed for two parts. In the first part, the proposed algorithm is tested on the Solomon 
benchmark datasets [25] including 56 VRPTW instances and each contains 100 customers. The instances contain a 
variety of customers who have their own demand and time windows distributions and have proved to be a challenge 
for both heuristics and exact methods since their introduction. The well-known 56 Solomon benchmark problems for 
vehicle routing problems with hard time windows are based on six classes of problem instances. The characteristics 
of each class are summarized as the following table. 
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Table 1: Solomon benchmark dataset characteristics 

Problem set The geographical 
location of customers Vehicle capacity Time windows 

C1xx a: [0, 100] and b: [0, 90] 200 0 – 1236 

R1xx a: [0, 70] and b: [0, 80] 200 0 – 230 

RC1xx a: [0, 100] and b: [0, 90] 200 0 – 240 

C2xx a: [0, 100] and b: [0, 90] 700 0 – 3390 

R2xx a: [0, 70] and b: [0, 80] 1000 0 – 1000 

RC2xx a: [0, 100] and b: [0, 90] 1000 0 - 960 

Table 1 presents the important characteristics of Solomon benchmark dataset. The dataset including six problem 
classes is named C1xx (C101-C109), C2xx (C201-C208), R1xx (R101-R112), R2xx (R201-R211), RC1xx (RC101-
RC108), and RC2xx (RC201-RC208).  In the first class, customer locations are clustered (problem sets C1xx and 
C2xx) in the range [0, 90]. In the second class, customers locations are randomly generated in the range [0, 80] 
(problem sets R1xx and R2xx) and in the last class customers, locations are mixed with randomly generated and 
clustered customer locations (problem sets RC1xx and RC2xx) in the range [0, 90]. In addition, the problem classes 
R1xx, C1xx, and RC1xx have shorter time windows and are serviced by a small size vehicle in each route while 
problem classes R2xx, C2xx, and RC2xx have long time windows and are served by the large vehicles. 

3.0    RELATING ALGORITHMS 

This work proposed the hybrid of fuzzy technique and onlooker bee process of ABC algorithm to an evolutionary 
algorithm. Therefore, the important fuzzy technique, ABC algorithm and evolutionary algorithm approach to the 
VRPTW are described in this section. 
 
3.1  Evolutionary Algorithm (EA) 

The basic idea of the ‘Evolutionary Algorithm’ (EA) is to allow the individuals that meet certain selection criteria 
and the least fit members of the population to be eliminated. The survivors are in survival mode until better solutions 
are determined. The selection, reproduction, and mutation biology concepts of [26] are considered in the 
evolutionary algorithm. Members of the population set will converge to the solutions based on their quality. Three 
main subclasses of the evolutionary algorithm are the genetic algorithm (GA), evolution strategies (ES) and 
evolutionary programming (EP). The evolutionary strategies and genetic algorithm are reviewed in this section. 

In the vehicle routing problem with time windows domain, [27] proposal consists of two evolutionary strategies in 
1999. The initial population (size = µ  ) are generated based on savings algorithm of [28]. The stochastic element 
consists of the random selection of savings elements in the saving list. The parents are randomly selected and one 
offspring is produced after the recombination process is done.  A number of offspring (λ µ>  ) is created in this 
way. µ  number of offspring will be selected to be the next generation based on their fitness values (based on route 
numbers, total travel distance, and route elimination criteria). The mutation is based on local searches of Or-opt 
[29], 2-opt* [30] and λ -interchange-move [31] with λ=1. In their proposed model, the number of the vehicle is 
reduced based on the Or-opt [29] operator. The recombination phased is skipped by an evolutionary strategy ES1 
and the ES2 uses the uniform order-based crossover [32] to modify the initially randomly created mutation codes. 
[27, 33] proposes the method that all customers are served by separate routes at the beginning. Then, the cheapest 
reinsertions of single customers with varying insertion criteria are applied to create a set of six initial solutions and 
the best one is used as a starting point for the evolution strategies. The multi-parametric mutation consists of 
removing a set of customers from a solution randomly based on the distance to the depot or by selecting one 
customer from each route. Then, the cheapest insertion heuristic is used to reschedule the removed customers. After 
the mutation, the solution is improved in the same way as [27] and GENIUS heuristic of [34]. [23] proposed a 
hybrid multi-objective evolutionary algorithm (HMOEA) to solve the VRPTW in 2006. In their work, each 
chromosome contains a set of routes, where each route includes a list of customers. In the crossover process, the 
chromosomes would exchange their best route to each other. If the redundant customer(s) exists in the chromosome, 
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the existing customer will be deleted and keep the new added one. In their work, each chromosome contains a set of 
routes, where each route includes a list of customers. In the crossover process, the chromosomes would exchange 
their best route to each other. If the newly added route contains the customer that exists in the chromosome, the 
customer is eliminated and the customer which has been kept will be added in the new position. A multimode 
mutation operator is proposed in the HMOEA for feasibility handling. If the mutation operator produces an 
infeasible solution, the original routes will be restored. This does not help to generate feasible solutions, but for 
avoiding infeasibility. 

The Genetic Algorithm (GA) is an adaptive heuristic search method based on population genetics. The basic 
concepts of the algorithm are developed by [35] in 1975. The creation of a new generation of individuals involves 
primarily four major steps: initialization, selection, crossover, and mutation. In the VRPTW applications, the 
extension of the genetic algorithm has been broadly applied. The two-phase hybrid of a genetic algorithm and an 
evolutionary algorithm was proposed by [36]. The genetic algorithm was applied in the first phase to find feasible 
solutions and then the best solution was produced by EA in the second phase. The hybridization of the genetic 
algorithm and constructive heuristic was proposed by [20] in 1998. The nearest neighbor heuristic of [25] was used 
to create the initial population. Then, the genetic algorithm processes were applied to find the solution. The multi-
criteria genetic algorithm was announced by [21] in 2001. The initial population is randomly generated as the 2-opt* 
from [30], which is then applied in a crossover operation while random reinsertions of customers between routes are 
applied in the mutation stage. Based on the rank of the individual, the probability selection shall be confirmed as 
being done. The best-found individual will be chosen to replace the worse one. [22] proposed a GA and developed 
an elitism strategy, which collected the best individuals from the current population and the offspring to perform a 
2-opt improvement. 

3.2  Artificial Bee Colony Algorithm (ABC algorithm) 
 
The ABC algorithm is a new evolutionary metaheuristic technique proposed by [37] for a numerical optimization 
problem. The algorithm was inspired by the intelligent behavior of natural honey bees in their search for nectar 
sources around their hives. The algorithm was modified by [38] for a real-parameter optimization problem. The 
main steps of the algorithm are illustrated below: 

1: Initialize Population 
2: repeat 
3: Place the employed bees on their food sources 
4: Place the onlooker bees on the food sources depending on their nectar amounts 
5: Send the scouts to the search area for discovering new food sources 
6: Memorize the best food source found so far 
7: until requirements are met 

The algorithm starts with the initial population which is randomly generated. Then, during the employed bee stage, 
onlooker bee stage and scout bee stage are repeated until requirements have been fulfilled or the stopping conditions 
are met.  

For the vehicle routing problem with time windows, a very limited number of ABC algorithms was developed to 
solve the problem. [15] produced the Bee Colony-inspired Algorithm (BCiA) which contains a two-stage approach 
for solving the Vehicle Routing Problem with Time Windows. The algorithm tries to reduce the number of vehicles 
in the first stage and the second stage is continued to reduce the total tour length. The algorithm is particularly 
efficient for the smaller test entities of the Solomon benchmarks. In the vehicle routing problem, [39,40] introduced 
ABC algorithm for traveling salesman problems. The algorithm has been proposed to solve the capacitated vehicle 
routing problem in recent years by [41, 42, 43]. The performance of the ABC heuristic has been evaluated for 
classical benchmark instances by [41]. They proposed an enhanced version of ABC to improve the performance of 
the basic ABC for solving the CVRP. The computational results of the enhance version obtained better solutions 
than the original version in all test instances. [44] developed a simulation framework in order to obtain performance 
comparisons with the other method and proposed the simulation results, which have been achieved by using the 
ABC algorithm to the traveling salesman problems. The ABC-T algorithm was developed by [16] to improve the 
performance of ABC algorithm. The tournament selection strategy which has been proposed demonstrated that the 
main criteria of the algorithm relate to the fitness value. The paper shows that the algorithm works efficiently with 
VRPTW, especially for problem R102. However, only some few experiments have been done in this work. In 
comparison with other algorithms, ABC-T ranked 2nd with the shortest distance. [17] proposed a hybrid algorithm 
based on tabu search and the ABC called TABU-ABC in 2017. After the initial population is randomly generated, 
the tabu search is applied to improve them and then continued working on other processes of the ABC algorithm. 
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The TABU-ABC algorithm was tested on the VRPTW and the VRP with time window and pallet loading 
constraints (VRPTWP) thus leading to an outcome with satisfying results.   

 
3.3  Fuzzy Technique 
 
The Fuzzy theory was presented by [45] in 1965, whereas many different research areas have found that it is a 
useful tool to describe subjective opinions, [46]. In applications, the basic fuzzy inference algorithm is a generalized 
implementation of fuzzy logic. A membership function provides a measure of the degree of similarity of an element 
to a fuzzy set. The design of membership functions for the fuzzy variables and the rules are the design elements of 
the basic fuzzy inference. For each fuzzy variable, the problem domain has to be determined. Problem domain 
represents the extent of validity of the fuzzy inference rule on each variable domain, the next stage is to fix the shape 
of the membership functions then the number of members (or a number of mapping categories) and their locations 
on the universe of discourse has to be found. There are different shapes of membership functions e.g. triangular, 
trapezoidal, piecewise-linear, Gaussian and bell-shaped. In this work, the membership function is assumed to be 
triangular in shape and the assumption is continued in this study. 

 
In the vehicle routing problem, fuzzy membership function has been applied to the problem in several papers. In 
1996, [47] developed a model to design vehicle routing when the demand at the nodes is uncertain. The fuzzy theory 
has been applied to the Chinese postman problem with time windows in 2002 by [48]. They considered two cases in 
a fuzzy time-constrained of the problem. 1) the arrival time at a node may be fuzzy to describe the degrees of 
possibility and 2) the upper and lower bounds of time window constraints are uncertain. Their objectives are to 
minimize the total time to finish the tour and maximize the satisfaction level. [49] proposed a hybrid solution 
algorithm in 2006, they considered a vehicle routing problem in which the traveling times are assumed to be fuzzy 
variables. [50] considered travel distance, service satisfaction, waiting time, delay time and space utility to all be 
integrated into Lin’s formulation as the fuzzy vehicle routing and scheduling problem (FVRSP). [51] proposed a 
genetic approach for fuzzy vehicle routing problems with time windows (FVRPTW). After that, they included the 
fuzzy service time under time windows and capacity constraints to Lin’s formula and then based on this extended 
model; a real-time application is added by them in 2010 [52] to produce the FVRPTWC. [46] proposed and solved 
the vehicle routing problem with fuzzy time windows (VRPFTW) in 2009. The proposed VRPFTW works under the 
concept of fuzzy time windows that targets to minimize the travel distance and to maximize the service level for 
customers. Fuzzy arithmetic rules and fuzzy logic are included in the two-stage algorithm and applied to attain a 
Pareto solution. The algorithm was proposed to deal with problem set RC of Solomon’s dataset. The model provides 
effective results but cannot obtain an optimal solution in some cases. The paper suggests that the metaheuristic 
algorithms should be involved to consider the complexity of obtaining an optimal solution. [53] considered fuzzy 
VRPTW with uncertainty time windows. Fuzzy credibility theory is applied. The triangular fuzzy number represents 
fuzzy travel time in their chance, which had been constrained by the proposed model for the problem and found the 
optimal solution through the ant colony optimization algorithm. [54] proposed a multi-phase method for 
geographical transportation in 2017. The heuristic method is used to find route numbers in the first phase. In the 
second phase, the triangular membership function is applied to construct the feasible population and then GA is 
taken to improve the solution. Based on the previous review, the fuzzy technique can deal with the capacity and time 
windows constraints of the vehicle routing problem with time windows effectively. However, it was discovered that 
the technique was usually applied in a small size problem and for a specific organization. Therefore, this paper aims 
to investigate and apply this technique based on the research studies from [52] and [54] to 56 problem instances of 
Solomon’s benchmark dataset. 

4.0  METHODOLOGY 

This work proposed the new methodology for the vehicular network with fuzzy time windows. To produce effective 
searching area, the fuzzy technique based on the work from [52] and [54] are applied to produce a feasible initial 
population. The proposed algorithm enhances EA exploration ability by adding some random searches around 
promising individuals under the guidance of onlooker bees.  

In the ABC algorithm, the artificial bee colony consists of employ bees, onlooker bees, and scout bees. Each employ 
bee exploits a food source (candidate solution) and brings the information to the hive and shares the information 
with onlooker bees in the hive. The nectar amount in a food source represents the quality of the solution (fitness 
value). An onlooker bee chooses a food source depending on the probability value ip  associated with nectar 
amount. The probability ip  of the individual isl


 is formulated for the minimization objective as equation (3) 
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   
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   
   
   
∑ ∑

 

        (3) 

The steps of the proposed algorithm are described below. The proposed algorithm follows the typical flow of an EA. 
Chromosome representation is demonstrated in section 4.1 and each step of the proposed algorithm is presented 
from section 4.2 to 4.4. 

 Step1: Generate the initial population (produce SN individuals; see section 4.2). 
Step2: Produce SN  offspring. Set 0on = .  

Step2.1: Select two parents randomly.  
Step2.2: Inter-Route Crossover (section 4.3). 
Step2.3: Intra-Route mutation operator (section 4.4). 
Step2.4: 0 1on n= + . If on N= , then go to Step 3; otherwise continue working on Step 2.1-2.4. 

Step3: Calculate ip  of each individual by equation (3) (individual number = 2SN × ). 
Step4: Select SN new generation based on roulette wheel probability selection method (from 2SN × individuals).  
Step5: Evaluate the fitness function of each individual. 
Step6: Select individual based on Elitism strategy (from 2N ×  individuals) and replace them with the worse  

   individual from Step4.  
Step7: Continue Step2- Step6 until meet stopping criteria. 

The chromosome representative is described in section 4.1 and then the feasible initial population is formed by the 
fuzzy technique described in section 4.2. After N  feasible individuals are constructed to be the initial population, N
offspring will be produced in step 2. One problem that the classical one-point crossover encountered is the 
duplication and omission of customers in the chromosome after reproduction. This paper proposes a simple 
crossover operator for the proposed algorithm that allows the exchange between the selected routes in the 
chromosome (individual). Each route in the chromosome acts as a parent that will be chosen randomly (step 2.1). 
Then, the crossover points of the two parents will be randomly selected and the local search will be applied (step 
2.2). The inter-route crossover is described in detail in section 4.3. Previously, the RAR (remove and reinsert) 
mutation operator was proposed by Gendreau et al. [55]. The route will be feasible by revoking and inserting a node 
into a random point of the route. In this paper, the nearest neighborhood operator is applied. The processes are 
explained in section 4.4. Steps 3 – 5 refer to onlooker bee processes. The fitness function of each individual will be 
evaluated based on an objective function that’s given in equation (2). The new generation is chosen depending on 
the probability value ip  based roulette wheel probability selection method. The elitism strategy selects a small 
number of good individuals and replaces the worse individuals in the next generation. Because the population size of 
this work is small, the individual selection based on elitism strategy is 10%. The evolution process will be carried 
out until the stopping condition is met or no individual has improved over the last 100 generations.  

4.1  Chromosome Representative 
 
Chromosome in evolutionary algorithms is almost represented as a fixed-structure bit string which is not suitable for 
VRPTW. The VRPTW is an order-oriented NP-hard optimization problem where sequences among customers are 
essential [23]. Each chromosome, including the number of routes (vehicles), serves the number of customers 
sequentially under the vehicle capacity and time windows constraints.  

 

Fig. 1: Chromosome representation 



The New Methodology for Vehicular Network with Fuzzy Time Windows (Special Issue 2019).pp.35-53 
 

42 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 

In fig. 1, there are n  number of customers served by m  vehicles. The order of customers ( )iv  in each route after 

0v  is the sequence of customers served by vehicle ik . Customer 1 2 3 4, , ,v v v v  and customer 5v  are served by vehicle 

1k .  In vehicle 2k , there are customers 6 7 8, ,v v v  and 9v  served by the vehicle sequentially while vehicle mk  
services customers 1nv −  and customer nv . Customer 1v , 6v  and customer 1nv −  are the first customer visited by 
vehicle 1k , 2k  and mk  respectively. Customer 5v  is visited by vehicle 1k , customer 9v  is served by vehicle 2k  and 
customer nv is serviced by vehicle mk  before the vehicle returning to the depot 0v . 

4.2  Generate Initial Population 
 
In the initialization stage, the fuzzy strategy [52, 54] is considered to be applied in order to produce a feasible 
population. The feasible routes are construed in the same way as [58]. The triangular membership function is 
applied to decide the position of the customer in the route. The following constraints are not to be broken during the 
service routes which are under construction.  (1) The service of each vehicle is started and stopped at the depot 0( )v  
and (2) the travel times between customers are assumed to be fuzzy variables. (3) Each customer will be served by 
only one vehicle within their time windows [ , ]i ie l in order to minimize the cost ijc  and (4) total of customers 

demand id∑  in the route does not exceed the maximum of vehicle capacity iq .  

In order to maximize service time satisfaction, the triangular membership function based on the concept of fuzzy 
due time from Gupta et al. [52] is brought to grade the satisfaction of service time of customers. The membership 
function of service time  i ( )sθ  can be defined for any service time ( 0)s >  as the following equation: 

( )
1; 
0;

i i
i

e s l
s

otherwise
θ

≤ ≤
= 


       (4)

 
The triangular membership function is applied to find the preference of customers as a triangular fuzzy number 
under the following equation:  

( )

0;   
( )

; 
(
(

;

)
)

 
( )

i i i i

i i
i i i i i

i i

i i
i i i

i i

s e or s l
s e

s e s u
u e
l s

u s l
l u

θ


 < >
 −= ≤ ≤

−
 −

< ≤
−       (5) 

Where is  represent the time at which the customer is served, iu  represent fuzzy due time, i i iu e t= + ; it  is the 
time spent to service at customer iv . The processes to generate the initial population are shown below. 
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Fig. 2: The procedure for building an initial population 

Fig.2 presents the processes to produce the feasible initial population. To produce each feasible individual of the 
initial population, the first customer will be randomly added to each route. Then, service time satisfaction of all 
remaining customers will be evaluated by equation (4). After that, the triangular membership function is calculated 
by the fuzzy value of all satisfied customers in equation (5). Customer(s) will be inserted to an appropriate route 
based on their fuzzy value. The processes will be continued until all customers are added to the route.  

4.3  Inter-Route Crossover.  

A local search is an optimization method that explores the given neighborhood solution to generate a local optimal 
solution. In the inter-route crossover, this work uses four local search operators including swap 1-1, insert swap 1-0, 
swap 2-2 and 2-Opt* which are described in the following.  

 

Fig. 3: The example of parent routes 

To explain the effect of local search operator, the example of parent routes is shown in Fig.3. The figure represents 
two example routes served by vehicle 1k  and 2k . The vehicle starts their service from the depot 0v  and returns to 
the depot at the end of service. Customers 1v , 2v , 3v , 4v and 5v are served by vehicle 1k respectively and customers 

6v , 7v , 8v  and 9v are served by vehicle 2k sequentially. 
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  Fig. 4: Swap 1-1 operator 

Fig.4 illustrates the route after swap 1-1 operator is applied to the parent routes. In Fig.4, customer 4v in route 1k and 
customer 9v in route 2k are randomly selected. After the swap 1.1 is applied, the selected customers from the two 
routes will exchange their positions. In this example, customer 4v is moved to route 2k  and 9v is swapped it’s 
position to route 1k .  

 

Fig. 5: Swap 1-0 operator 

Fig.5 explains swap 1-0 operator. In Fig.5, customer 9v is eliminated from route 2k and inserted to route 1k . In the 
case that the selected route contains only one customer and the customer is chosen to insert to another route, that 
route will be erased from the solution.  

 

Fig. 6: Swap 2-2 operator 

Fig.6 explains the effect to the parent routes after swap 2-2 operator is applied. In Fig.6, the edge between customers 
( 1v , 2v ) in route 1k and edge between customers ( 8v , 9v ) in route 2k are exchanged by their positions. 
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Fig. 7: 2-Opt* operator 

Fig.7 explains the effect of swap 2-Opt* operator the parent routes. In Fig.7, customer 1v  and 8v are randomly 
selected and they will exchange their position with their next node ( 1v ↔ 2v  and 8v ↔ 9v ). After that, the edge 
between customers ( 1v , 2v ) in route 1k and edge between customers ( 8v , 9v ) in route 2k are swapped their position 
between the routes. 

4.4  Intra-Route mutation operator. 

 

Fig. 8: Nearest neighborhood operator workflow 

In Fig. 8, the nearest neighborhood operator workflow is shown. In this work, the nearest neighborhood operator is 
applied to improve each route in the chromosome. In this case, the movement of customers in each route will not 
affect the vehicle capacity but the time windows of each customer will still be considered and cannot be ignored. 
The first customer (current customer/ current vertex) is chosen due to its earliest time windows ie  and the next 
customer is selected due to the shortest edged that is connecting between the current customer and the next 
customer. This can help to improve the solution by moving the position within the route. However, it should be 
noted that after the intra-route mutation is done all constraints must be checked and the new solution must be 
feasible. 

5.0   COMPUTATIONAL RESULTS AND DISCUSSION 
 
In this work, the proposed algorithm is tested on 56 problem instances of the Solomon benchmark dataset in 
evaluating the performance of the algorithm, and the experiment environments are set in the same way for all testing 
instances. The control parameters in the experiment are set in the same way as the comparing algorithm, HMOEA 
[23]. However, some control parameters of the HMOEA [23] e.g. elastic rate and squeeze rate are ignored because 
they are the special parameter used in the method of HMOEA [23]. The control parameters are as follows: (1) 
number of customers is 100, (2) number of iteration is 1500, (3) crossover rate is 0.7 (4) mutation rate is 0.1 (5) loop 
will be stopped when the current solutions are not improved for 10 iterations and elitism rate is 10% of the 
population size. Because the feasible population is produced by a special technique for the initialization stage, the 
population size used in this work is 20 which caused the elitism rate to be different with HMOEA [23] as well.  

In this section, the consistency and reliability of the results obtained by the proposed algorithm are investigated. The 
algorithm runs 10 times as the comparing algorithms for Solomon’s 56 data sets. The results on the VRPTW of the 
proposed algorithms are indicated in comparison against the other results that have been recently published in other 
papers shown in Table 2, the best results are bolded.  
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In Table 2, the best distance (Best), mean of the distance from ten runs (Mean), standard deviation (SD) and percent 
of the coefficient of variation (CV) which is the ratio between the standard deviation and the mean are 
demonstrated. In the table, SD and CV of [56] are not shown because they are not available in the published paper. 
As the previous mention, this work finds the best routes number before the distance is considered, then the same 
number of vehicles are produced for all testing data sets. The table shows that all comparing algorithms provide 
similar performance for problem class C whereas the coefficient of variation from the proposed algorithm is the 
best. However, the best distance given by [57] displays the best performance while the results of [23] are the worse. 
According to [10], a solution which requires fewer vehicles will be considered a better solution with more than one 
route, regardless of the total traveled distance. The proposed results in Table 2 were selected based upon the number 
of vehicle (NV). If NV is minimized, then the distance is considered. In problem class C including C101-C109 and 
C201-C208, all comparing algorithms produce the same number of vehicles. The results (Best) from [23] provide 
almost better results than others. Problem class R contains R101-R112 and R201-R211. The proposed algorithm 
provides almost the same results as the results of [56]. From 21 problem instances of this problem class, the 
proposed algorithm gives the worse results than [56] in problem R103, R110 and R112 while proposes better results 
in problem R108, R111, R203, and R205 in terms of distance with the same number of vehicles. Comparing to the 
other two algorithms, the table shows that the proposed algorithm gives a better number of vehicles than [23] for 15 
problem instances and better than [57] for 21 problem instances. The last problem class is RC which contains 16 
problem instances including RC101-RC108 and RC201-RC208. The table illustrates that [56] produce a better 
number of vehicles in problem RC101, RC102, and RC106 in comparison to other algorithms. In consideration to 
the same number of vehicles, the proposed algorithm gives the best distance for 7 instances including RC105, 
RC107, RC108, RC202, RC203, RC206, and RC208.   

Table 3: The average distance over ten runs of pairwise comparison using the Wilcoxon signed-ranks  
non-parametric test (α = 0.05) 

 
Note: a, b and c indicating that the average mean of the proposed algorithm is less than, greater than and equal to the comparison 
algorithm respectively.  

Table 3 presents information regarding the p-value (Asymp. Sig. (2-tailed)) resolved by the Wilcoxon signed-rank 
test for the considered test instances. The propose displays statistically superior performance at the 95% significance 
level (α = 0.05) on [23]. In terms of [56], the proposed algorithm reveals statistically exceeding performance except 
for C10x and C20x. However, a Wilcoxon signed-rank test showed that they are not significantly different (z= -1.00, 
p=0.317 for C10x and z= -1.402, p=0.161 for C20x). The proposed algorithm provides unsatisfied distance 
comparing to [57]. Therefore, the average number of vehicles is examined in the next table.  

Table 4: The average vehicle numbers over ten runs of pairwise comparison using the Wilcoxon signed-ranks  
non-parametric test (α = 0.05) 

 
Note: a, b and c indicating that the average mean of the proposed algorithm is less than, greater than and equal to the comparison 
algorithm respectively.  

In Table 4, the average vehicle number over ten runs is investigated. Instances C10x and C20x are disregarded in 
this table because they are not different in any comparing algorithms. The table shows that average number of the 
vehicle given by the proposed algorithm and [56] are not different at the 95% significance level (α = 0.05) while it 
claims that the proposed algorithm provides significantly better results than [23] and [57].  

Negative 
 Ranks
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(2-tailed)
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Ranks
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Ranks
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Asymp. S ig. 
(2-tailed)
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Ranks

Positive 
Ranks

Ties Total z
Asymp. S ig. 

(2-tailed)

C1xx 1a 0b 8c 9 -1.000 0.317 2a 0b 7c 9 -1.342 0.18 9a 0b 0c 9 -2.666 0.008

C2xx 1a 7b 0c 8 -1.402 0.161 1a 7b 0c 8 -1.402 0.161 8a 0b 0c 8 -2.521 0.012
R1xx 12a 0b 0c 12 -3.059 0.002 6a 6b 0c 12 -.275 0.784 11a 1b 0c 12 -2.981 0.003
R2xx 9a 2b 0c 11 -2.667 0.008 2a 9b 0c 11 -2.578 0.01 10a 1b 0c 11 -2.845 0.004

RC1xx 7a 1b 0c 8 -1.960 0.05 6a 2b 0c 8 -.420 0.674 6a 2b 0c 8 -1.680 0.093
RC2xx 8a 0b 0c 8 -2.521 0.012 1a 7b 0c 8 -2.380 0.017 6a 2b 0c 8 -0.980 0.327

Propose vs Zhang et al. [57] Propose vs Tan et al. [23]
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(2-tailed)

R1xx 0a 3b 9c 12 -1.633 0.102 12a 0b 0c 12 -3.065 0.002 8a 1b 3c 12 -2.309 0.021

R2xx 0a 0b 11c 11 .000 1 11a 0b 0c 11 -2.956 0.003 7a 0b 4c 11 -2.460 0.014

RC1xx 1a 3b 4c 8 -1.473 0.141 8a 0b 0c 8 -2.521 0.012 4a 0b 4c 8 -2.000 0.046

RC2xx 0a 0b 8c 8 .000 1 8a 0b 0c 8 -2.521 0.012 6a 0b 2c 8 -2.271 0.023

Dataset

Propose vs Cordeau, & Maischberger [56] Propose vs Zhang et al. [57] Propose vs Tan et al. [23]
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6.0    CONCLUSION 
 
This work proposes a new methodology for the vehicular network with fuzzy time windows. In the initialization 
stage, the fuzzy technique is applied to deal with the uncertainty time windows constraint and produces the feasible 
population. After that, the intra-route crossover, intra-route mutation, elitism strategy, and onlooker bee probability 
selection method are enhanced in the original processes of an evolutionary algorithm in order to improve the 
population. The proposed algorithm is tested on 56 problem instances of Solomon’s benchmark dataset and provides 
some very encouraging results.  

In Table 2, the proposed algorithm proposes the same quality results for problem class C (C101-C109 and C201-
C208) as other comparing algorithms except for the HMOEA of [23]. Although the HMOEA provides the best 
results for problem class C, the algorithm presents the worse results in terms of the coefficient of variation (CV). 
With the same number of vehicles, [56] displays the best distance for 6 problems including R103, R110, R112, 
RC101, RC102, and RC106 while the proposed algorithm presents the best distance for 11 problems which are 
R108, R111, R203, R205, RC105, RC107, RC108, RC202, RC203, RC206, and RC208. In addition, the table shows 
that the proposed algorithm produces 15 and 17 better number of vehicles when comparing to. [23] and [57] 
respectively. The proposed algorithm provides a better distance than [23] for an equal number of vehicles (problem 
R2xx and RC2xx). More significantly, the proposed algorithm exhibits the best results for 40 from 56 problem 
instances in terms of the coefficient of variation values. Table 3 and Table4 illustrate the information regarding the 
p-value (Asymp. Sig. (2-tailed)) resolved by the Wilcoxon signed-rank test for the considered test instances. The 
proposed methodology displays a statistically superior performance at the 95% significance level (α = 0.05) on 
comparing algorithms. This claims that the proposed algorithm is effective and competitive for configuring the 
VRPTW problem. 
 
 
REFERENCES 
 
[1]  T. G. Crainic and G. Laporte, Planning models for freight transportation. European journal of operational 

research, 97(3), 409-438. 
 
[2]  J. Larsen, Parallelization of the vehicle routing problem with time windows. Lyngby, Denmark: Institute of 

Mathematical Modelling, Technical University of Denmark, 1999. 
 
[3]  B.D. Backer, V. Furnon, P. Prosser, P. Kilby and P. Shaw, Local search in constraint programming: 

Application to the vehicle routing problem. In Proc. CP-97 Workshop Indust. Constraint-Directed 
Scheduling (pp. 1-15). Austria: Schloss Hagenberg, 1997. 

 
[4] B.L. Golden, and I.A. Wasil, OR Practice—Computerized Vehicle Routing in the Soft Drink 

Industry. Operations research, 35(1), 6-17, 1987. 
 
[5]  O. Bräysy and M. Gendreau, Vehicle routing problem with time windows, Part I: Route construction and 

local search algorithms. Transportation science, 39(1), 104-118, 2005. 
 
[6]  J-P. Rodrigue and T. Notteboom, The Geography of Transport Systems, New York: Routledge, forth edition, 

ISBN 978-1138669574. 
 
[7]  K. Halse, Modeling and solving complex vehicle routing problems. Ph. D. thesis, Institute of Mathematical 

Modelling, Technical University of Denmark, Lyngby, Denmark, 1992.  
 
[8]  G.B. Dantzig and J.H. Ramser, The truck dispatching problem. Management science, 6(1), 80-91, 1959. 
 
[9]  J.F. Cordeau, G. Laporte and A. Mercier, A unified tabu search heuristic for vehicle routing problems with 

time windows. Journal of the Operational research society, 52(8), 928-936, 2001. 
 
[10]  O. Bräysy and M. Gendreau, “Tabu search heuristics for the vehicle routing problem with time windows,” 

SINTEF Applied Mathematics, Department of Optimisation, Oslo, Norway, Internal Report STF42 A01022, 
2001. 

[11]  R. Baldacci, A. Mingozzi and R. Roberti, Recent exact algorithms for solving the vehicle routing problem 
under capacity and time window constraints. European Journal of Operational Research, 218(1), 1-6, 2012. 



The New Methodology for Vehicular Network with Fuzzy Time Windows (Special Issue 2019).pp.35-53 
 

51 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 

 
[12]  D.J. Bertsimas and D. Simchi-Levi, A new generation of vehicle routing research: robust algorithms, 

addressing uncertainty. Operations Research, 44(2), 286-304, 1996. 
 
[13]  C. Blum and A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual 

comparison.  ACM computing surveys (CSUR), 35(3), 268-308, 2003. 
 
[14]  L. Bianchi, M. Dorigo, L.M. Gambardell and W.J. Gutjahr, A survey on metaheuristics for stochastic 

combinatorial optimization. Natural Computing, 8(2), 239-287, 2009. 
 
[15]  S. Häckel and P. Dippold, The bee colony-inspired algorithm (BCiA): a two-stage approach for solving the 

vehicle routing problem with time windows. In Proceedings of the 11th Annual conference on Genetic and 
evolutionary computation (pp. 25-32). ACM, July 2009. 

 
[16]  Y. J. Shi, F.W. Meng and G.J. Shen, A modified artificial bee colony algorithm for vehicle routing problems 

with time windows. Information Technology Journal, 11(10), 1490-1495, 2012. 
 
[17]  B. Yu, Z.Z. Yang and B.Z. Yao, A hybrid algorithm for vehicle routing problem with time windows. Expert 

Systems with Applications, 38(1), 435-441, 2011. 
 
[18]  L. Jourdan, M.  Basseur and E.G. Talbi, Hybridizing exact methods and metaheuristics: A 

taxonomy. European Journal of Operational Research, 199(3), 620-629, 2009. 
 
[19]  E.G. Talbi, A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(5), 541-564, 2002. 
 
[20]  J. Berger, M. Salois and R. Begin, A hybrid genetic algorithm for the vehicle routing problem with time 

windows. In: Conference of the Canadian Society for Computational Studies of Intelligence (pp. 114-127). 
Springer, Berlin, Heidelberg, 1998. 

 
[21]  M. Rahoual, B. Kitoun, M.H. Mabed, V. Bachelet and F.  Benameur, Multicriteria genetic algorithms for the 

vehicle routing problem with time windows. In: 4th Metaheuristics International Conference (pp. 527-532) 
MIC’2001, Porto. Portugal., 2001 

 
[22]  T.C. Chiang, and W.H. Hsu, A knowledge-based evolutionary algorithm for the multiobjective vehicle 

routing problem with time windows. Computers & Operations Research, 45, 25-37, 2014. 
 
[23]  K.C. Tan, Y.H. Chew, and L.H. Lee, A hybrid multiobjective evolutionary algorithm for solving vehicle 

routing problem with time windows. Computational Optimization and Applications, 34(1), 115, 2006. 
 
[24]  P. Toth and D. Vigo, The vehicle routing problem, ser. SIAM monographs on discrete mathematics and 

applications. Society for Industrial and Applied Mathematics, 2001. 
 
[25]  M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window 

constraints. Operations research, 35(2), 254-265, 1987. 
 
[26]  C. Darwin, “On the Origin of Species”, 1st edition, Harvard University Press, MA. 1859. 
 
[27]  J. Homberger and H. Gehring, Two evolutionary metaheuristics for the vehicle routing problem with time 

windows. INFOR: Information Systems and Operational Research, 37(3), 297-318,1999. 
 
[28]  G. Clarke and J.W. Wright, “Scheduling of Vehicles from a Central Depot to a Number of Delivery Points.” 

Operations Research 12, 568−581, 1964. 
 
[29]  I. Or, Traveling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Regional 

Blood Banking, Ph.D. thesis, Northwestern University, Evanston, Illinois, 1976. 
 
[30]  J.Y. Potvin and J.M. Rousseau, A parallel route building algorithm for the vehicle routing and scheduling 

problem with time windows. European Journal of Operational Research, 66(3), 331-340, 1993. 
 



The New Methodology for Vehicular Network with Fuzzy Time Windows (Special Issue 2019).pp.35-53 
 

52 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 

[31]  I.H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle routing 
problem. Annals of operations research, 41(4), 421-451, 1993. 

 
[32]  D. Goldberg, B. Korb and K. Deb, Messy Genetic Algorithms: Motivation, Analysis and First Results, 

Complex Systems 3: 493-530, 1989. 
 
[33]  D. Mester, An evolutionary strategies algorithm for large scale vehicle routing problem with capacitate and 

time windows restrictions. In Proceedings of the Conference on Mathematical and Population Genetics, 
University of Haifa, Israel, 2002. 

 
[34]  M. Gendreau, A. Hertz, and G. Laporte, New insertion and postoptimization procedures for the traveling 

salesman problem. Operations Research, 40(6), 1086-1094, 1992. 
 
[35]  J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to 

biology, control, and artificial intelligence. USA: University of Michigan, 1975. 
 
[36]  O. Bräysy, J. Berger, M. Barkaoui, A new hybrid evolutionary algorithm for the vehicle routing problem 

with time windows. In Route 2000 Workshop, Skodsborg, Denmark, 2000. 
 
[37]  D. Karaboga, An idea based on honey bee swarm for numerical optimization (Vol. 200). Technical report-

tr06, Erciyes university, engineering faculty, computer engineering department, 2005.  
 
[38]  D. Karaboga and B. Akay, Proportional—integral—derivative controller design by using artificial bee 

colony, harmony search, and the bees algorithms. Proceedings of the Institution of Mechanical Engineers, 
Part I: Journal of Systems and Control Engineering, 224(7), 869-883, 2010. 

 
[39]  D. Karaboga and B. Gorkemli, A combinatorial artificial bee colony algorithm for traveling salesman 

problem. In Innovations in intelligent systems and applications (inista), 2011 international symposium 
on (pp. 50-53). IEEE, 2011, June. 

 
[40]  Li, W. H., Li, W. J., Yang, Y., Liao, H. Q., Li, J. L., & Zheng, X. P. (2011). Artificial bee colony algorithm 

for traveling salesman problem. In Advanced Materials Research (Vol. 314, pp. 2191-2196). Trans Tech 
Publications. 

 
[41]  W. Y. Szeto, Y. Wu and S.C. Ho, An artificial bee colony algorithm for the capacitated vehicle routing 

problem. European Journal of Operational Research, 215(1), 126-135, 2011. 
 
[42]  P. Ji and Y. Wu, An improved artificial bee colony algorithm for the capacitated vehicle routing problem 

with time-dependent travel times. In Tenth international symposium on operations research and its 
applications (ISORA 2011) (pp. 75-82), 2011. 

 
[43]  I. Brajevic, Artificial bee colony algorithm for the capacitated vehicle routing problem. In Proceedings of the 

European computing conference (ECC’11) (pp. 239-244), 2011, April. 
 
[44]  A.S. Bhagade & P.V. Puranik, Artificial bee colony (ABC) algorithm for vehicle routing optimization 

problem. International Journal of Soft Computing and Engineering, 2(2), 329-333, 2012. 
 
[45]  L.A. Zadeh, Fuzzy sets.  Information and Control, 8: 338-353, 1965. 
 
[46]  J. Tang, Z. Pan, R.Y. Fung and H. Lau, Vehicle routing problem with fuzzy time windows. fuzzy sets and 

systems, 160(5), 683-695, 2009. 
 
[47]  D. Teodorović and G. Pavković, The fuzzy set theory approach to the vehicle routing problem when demand 

at nodes is uncertain. Fuzzy sets and systems, 82(3), 307-317, 1996. 
[48]  H.F. Wang  and Y.P. Wen, ime-constrained Chinese postman problems. Computers & Mathematics with 

applications, 44(3-4), 375-387, 2002. 
 



The New Methodology for Vehicular Network with Fuzzy Time Windows (Special Issue 2019).pp.35-53 
 

53 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 

[49]  Y. Zheng and B. Liu, Fuzzy vehicle routing model with credibility measure and its hybrid intelligent 
algorithm. Applied mathematics and computation, 176(2), 673-683. 2006. 

 
[50]  J. J. Lin, A GA-based Multi-Objective Decision Making for Optimal Vehicle Transportation. Journal of 

Information Science & Engineering, 24(1), 2008. 
 
[51]  R. Gupta, B. Singh and D. Pandey, A Genetic Approach for Fuzzy Vehicle Routing Problems with Time 

Windows, communicated to Indian Academy of Mathematics. Indore, India, 2009. 
 
[52]  R. Gupta, B. Singh and D. Pandey, Multi-objective fuzzy vehicle routing problem: a case study. Int. J. 

Contemp. Math. Sciences, 5(29), 1439-1454, 2010. 
 
[53]  S. Bansal and V. Katiyar, Integrating Fuzzy and Ant Colony System for Fuzzy Vehicle Routing Problem 

with Time Windows. arXiv preprint arXiv:1411.3806, 2014. 
 
[54] K. Kantawong, Multi-phase Method for Geographical Transportation. International Journal of 

Geoinformatics, 13(3), 2017. 
 
[55]  M. Gendreau, G. Laporte and J.Y. Potvin, Metaheuristics for the vehicle routing problem,“University of 

Montreal, Canada. Les Cahiers du GERAD G-98-52, 1999. 
 
[56]  J.F. Cordeau and M. Maischberger, A parallel iterated tabu search heuristic for vehicle routing 

problems. Computers & Operations Research, 39(9), 2033-2050, 2012. 
 
[57]  D. Zhang, S. Cai, F. Ye, Y.W. Si, & T.T. Nguyen,  A hybrid algorithm for a vehicle routing problem with 

realistic constraints. Information Sciences, 394, 167-182, 2017.   
 
 


	4.1  Chromosome Representative

