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ABSTRACT  

Recently, many methods have been developed for representing knowledge, reasoning, and result extraction extracting 

results based on the respective domain knowledge in question. Despite the ontological success in knowledge 

representation, the reasoning method has faces some challenges. The  main challenge in ontology reasoning methods 

is the failure in solving realization problems in the reasoning process.  Apart from the complexity of solving realization 

problems, this already daunting challenge is compounded by computational complexity the time complexity of the 

solving realization problem solving process problems is equal to that of NEXP TIME. This important issue problem 

is achieved solved by solving the subsumption and satisfiability problems. Thus, to solve the realization problem, we 

first partition the ontology or extract partitions related to the query. Then, the satisfiability problem is solved by 

extracting partitions, and all concepts related to the query are extracted. This study proposes a method to overcome 

this problem, where a new solution is proposed with an appropriate time position. Finally, the efficiency of the 

proposed method, is evaluated against other reasoning engines, and the results show optimized performance vis-a-

vis previous studies. 

 

Keywords: Semantic Web, Reasoning, Descriptive Logic, Ontology, Subsumption 

1.0 INTRODUCTION             

Data are mainly used in real-world and laboratory applications. However, due to the special aspects arising from the 

nature of the data, challenges also arise. One such challenge, one of which is the efficient and careful processing of 

real-world data or data analysis for reasoning and extraction of its rules and inherent logic. When the data are semantic, 

this problem becomes even more difficult. Thus, the reasoning type must be semantic and correspond to the data. In 

recent years, scholars have conducted done considerable research in the field of reasoning, especially semantic 

reasoning, to accelerate this area of research. The main goal of research in the field of reasoning is to improve machine 

understanding in the automatic process of reasoning. Generally, different types of reasoning, such as abductive 

reasoning, backward reasoning, and comparative reasoning, are used in their specific fields and applied to automatic 

and machine reasoning during the year. It describes a type of reasoning in which the hypothesis generation process is 

a description of the data [1]. In this study, abductive reasoning with ontological use is presented. First, the use of this 

type of reasoning in ontology is discussed. Then, the function of this type of reasoning in ontology is examined by 

defining some scenarios. Moreover, reasoning is the main problem in OWL-DL, which requires high computational 

cost. The integration of rules makes reasoning indecisive. In addition to the above limitations, ontology reasoning in 

OWL-DL has many practical limitations. In other words, the normal solution to obtain rich data using ontological 

reasoning is to solve the realization problem. Realization in OWL-DL is about finding the most specific classes to 

which an individual belongs; in other words, it is about computing the direct types for each individual. Realization is 

about finding the most relevant class of objects. However, realization is a problem with time complexity equivalent 

to that of NEXP TIME. The online performance of ontological reasoning has fundamental scalability and execution 

time issues, especially when the ontology has many individuals [2]. So far, various optimizations have been presented 

by relational database techniques to improve the reasoning performance of OWL-DL. Instance store is one of the most 

popular methods [3], which also has crucial limitations in reasoning over RDF data.  
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Recently, many methods have been developed for representing knowledge, reasoning, and extraction results. Despite 

the ontological success in knowledge representation, the reasoning method faces some challenges. The lack of problem 

realization in the reasoning process is the most important challenge in ontology reasoning. Apart from the complexity 

of solving realization problems, this already daunting challenge is compounded by computational complexity. The 

time complexity of realizing and solving the problem is equal to NEXP time. In this study, an optimal solution with 

reasonable time complexity is proposed. In this study, the realization problem has been divided into its concepts and 

smaller sub-problems and solved to improve the ontology reasoning process. The main goal is to overcome the 

realization complexity. This is done by solving the subsumption problem and the satisfiability problem. To solve the 

realization problem, the ontology is first partitioned, or partitions are related to the query. Then, the satisfiability 

problem by extracting partitions, and extracting all concepts related to the query are extracted. Next, the subsumption 

is solved for each identified pair of concepts in the satisfiability problem is solved until the end of the presented 

algorithm. Concepts that are not included in each of the subsets are considered as answers to the query. The following 

two issues need to must be considered. 

 

First, the concept of the query is the solution to the realization problem of individual A. For this concept, the most 

specific concept with respect to individual A is identified and then extracted. Second, at the end of the presented 

algorithm, the same concepts that are candidates for the most specific concept are obtained, whose sum is the final 

answer to the query. Thus, the new concepts are the best answer to the realization problem. In rare cases, it may also 

be an empty set where the sum of several empty sets is empty. The results show that this method works accurately. 

Thus, more time is saved and a faster answer is obtained. Moreover, the ontology partition shows that the proposed 

method achieves higher optimal proficiency than the existing methods. In the continuation of this article, the second 

part is dedicated to the literature review. The third part introduces descriptive logic and reasoning as basic concepts. 

The fourth part presents the methodology. The fifth part also provides a relevant example. The sixth part analyzes the 

results and studies the accuracy and execution time using the reasoning engines HermiT[4] and FaCT++ [5]. The 

results show that the proposed method outperforms the other methods. Finally, the seventh section is dedicated to the 

conclusions of the study. 

 

2.0    LITERATURE REVIEW 

This section describes the work done in this regard. A reasonable and thorough proof method for backward 

compatibility reasoning is presented, as well as a fully abstract trace-based semantics for class libraries [6]. The 

authors of [7] suggest a modular reasoning system that reuses code by using uninterpreted predicates.  A collection of 

publications on the history of medical sciences to find recurrent patterns of queries is examined in [8]. According to 

the suggested paradigm, the queries are represented in SQWRL, which provides a mechanism for applying temporal 

reasoners to answer inquiries about the history of science. Comparative reasoning models for various applications, 

such as RDF data where an agent is compared to other agents, are investigated by [9], [10]. A distributed reasoner 

with excellent efficiency in [11] is expressed. Its main limitation is that it only supports classification. More precisely, 

it is a distributed ontology classifier. According to [12], this reasoner is a meta-reasoner that uses a set of reasoners 

for inference, with its main drawback being its operation and query structure writing, which have made it unpopular. 

A free and open-source reasoner is introduced in [13]. Although this lightweight reasoner is highly efficient, it does 

not support many of the capabilities of a reasoner. The authors of [14] present the quality of crowdsourced relevance 

judgments regarding the ability to reason. This reasoner uses a forward-chaining inference engine whose efficiency is 

high and whose main problem is that it does not support the classification problem. A special model for inductive 

reasoning for searches and queries in the semantic web is presented in [15]. The main problem of this reasoner is its 

non-scalability, reducing its efficiency for large data sets. This model starts with detailed and specific rules and ends 

with general rules. The authors of [16] describe an automated user interface based on reasoning, a free and open-

source Java programming language. This reasoner is an OWL 2 DL reasoner with excellent efficiency on small data 

sets. However, its efficiency decreases significantly as the volume of the ontology increases. One of the challenges 

with a search engine that considers semantic information is that it requires index information beyond the stored 

traditional information, including entity mentions and type relationships [17]. Moreover, the performances of different 

and the same data structure types are discussed, the different indexes are described, and the appropriate index type for 

semantic search under different conditions is determined. In [18], query ambiguity resolution by query expansion 
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using a statistical linguistic technique during semantic query formulation is described to retrieve relevant answers 

from a Holy Quran ontology. Finally, [19] presents a black-box approach to parallelizing current description logic 

(DL) reasoners for the Web Ontology Language (OWL), resulting in a parallel framework that can be used to existing 

OWL reasoners to speed up their categorization process. 

 

Backward reasoning is another type of reasoning where the intended goal of the reasoning process is approached 

backward in order to examine the effective factors in achieving particular goals. This method is particularly in line 

with optimization. From another point of view, semantic reasoning can be divided into four classes. The solutions for 

semantic data reasoning model can also be divided into four main categories as follows: 

 

The first group has extended the display of semantic data to add rules and facts to evaluate the capability of reasoning 

rules. The main shortcoming of these methods is that with the modification and extension of semantic data to improve 

reasoning ability and define rules and facts, the data usually lose their essential and natural structure as well as their 

main semantic features [20], [21], [22]. The second group includes usage-based methods. In other words, in these 

methods, the data are transformed into an ontology structure, and the semantic data are used in the common reasoning 

model of these data to improve the quality of usage. For example, in an IP TV recommender system, semantic data 

and current ontologies are used to infer the appropriate recommendations for each user [23], [24]. The third group 

includes the methods in which the data model and the type of reasoning in semantic data are first converted into a 

logic model, such as first-order logic (FOL) or other logic types, and then one of the reasoning mode in logic is used 

to conduct reasoning on semantic data [25], [26], [27]. 

 

The fourth group is the same as the third group, with only one difference. That is, in addition to converting the semantic 

data structure into temporal logic, the semantic data themselves are converted to the temporal data structure, and 

reasoning is performed by the middle logic on temporal data [28], [29]. According to [28], [29]. Compared with other 

simpler, informal, and innovative methods, ontological methods not only have more advantages in their simplicity but 

also in their integration. The development Ontology Web Language-Descriptive Logic (OWL-DL)-based ontology 

models shows that this technique is sometimes inefficient in defining and understanding complex relationships and 

descriptions. Therefore, the constructors in the OWL-DL language are chosen to support the decidable reasoning 

process. Any process beyond that has no possibility of reasoning in OWL-DL [30]. Therefore, OWL-DL does not 

include explicit constructors, such as user activities, which may be useful for modelling complex domains. Recently, 

the semantic web community has conducted studies on the possible extension of OWL-DL features, the results of 

which are logical languages, such as SWRL, as used in [31]. 

 

See Table 1 for a list of reasoners and their supporting features. One of the main features of the reasoner is realization, 

which is the most complex problem in DL. The authors introduce the concept of bundle in [32]. However, as it uses 

probabilistic and palette-based contexts, it requires a high computational cost and a long runtime, which is not efficient 

for large data sets. [33] States one of the first reasoners for descriptive logic. The main drawback of this reasoner is 

that it is used to solve subsumption problems and is not efficient for classification problems. [34] Introduces Clipper, 

a reasoner for conjunctive query answering based on queries. The main drawback of this reasoner is its high time 

complexity and inefficiency on large data sets. DBOWL reasoner is presented in [35], which is an OWL reasoner 

whose main advantage is its scalability. An important disadvantage of this reasoner is that it has a precomputation 

step, and the data must be precomputed before being input to the reasoner to convert it to the correct format for the 

reasoner. DeLorean describes a fuzzy reasoner that implements fuzzy logic well [36]. The main limitation of this 

reasoner is that the input data must be fuzzy, and it does not support non-fuzzy data. Another drawback of this reasoner 

is its high time complexity. DRAGON [37] is an OWL reasoner used in a distributed manner. The main disadvantage 

of this reasoner is that it does not support the classification problem and, therefore, cannot be used for some 

applications. The authors of [38] present the a reasoner based on conjunctive query answering for DL programs. It 

performs well in supporting descriptive logic, but its time complexity is very high, making it inefficient for real-world 

applications. The jCEL reasoner is a rule-based reasoner designed for descriptive logic. This reasoner uses a rule-

based completion algorithm for inference. Its time and memory overhead are substantial (high time and space 

complexity) [39]. The reasoner introduced in [40] is very efficient in terms of time complexity. An important property 

of this reasoner is that it can reason in parallel until the inference is significantly reduced. However, its main drawback 

is its inefficiency in solving classification problems, rendering it useless for some applications. [41] states LiFR 

(Lightweight Fuzzy semantic Reasoner), which is a useful reasoner based on fuzzy logic. Since it is a first version and 

lightweight, its efficiency is good; however, it does not support much of the descriptive logic. [42] is a prototypical 

reasoner used to solve classification problems. Its performance in terms of time complexity is not reasonable, and it 
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does not support other descriptive logic problems. As can be seen in Table 1, only a few reasoners support the 

realization function. Against this background, this study aims to solve the realization problem efficiently, and the 

details are discussed in the following part. It proposes an efficient method for solving the realization problem based 

on satisfiability and subsumption problems. Computational complexity is the main problem in solving the realization 

problem. The proposed method manages to adequately address this drawback to some extent. The proposed method 

is implemented in a standard reasoner and is compared with other reasoners in a standard framework. The results 

revealed an optimized performance compared to previous studies. The criteria for assessment of the introduced 

reasoners in this framework are realization, classification and consistency. 

 

3.0   DESCRIPTIVE LOGIC AND REASONING      

DLs belong to the formal family of knowledge representation. Many DLs are more accurate than propositional logic 

and less accurate than FOL. The main problems of DLs are decidable such that a logical and competent procedure has 

been developed for them. DLs are used in artificial intelligence to describe and reasoning about the relationships 

between concepts in the application domain. DLs provide a formal and logical definition for ontologies and a semantic 

web. General, DLs model concepts, roles, individuals, and correlations thereof. An axiom (i.e., a logical statement 

related to the roles and/or concepts) is modelled in the most basic concept in DLs. Ontology is the precise and formal 

description of the features of the context of study. In addition, it defines a common word for all researchers who want 

to share information about a particular domain. In general, ontology languages presented for the semantic web are a 

syntactic variant of DLs [43]. In DLs, there are two different meanings of Terminological Box (TBox) and Assertional 

Box (ABox). In a general sense, TBox contains sentences describing concept hierarchies (i.e., the relationship between 

concepts), while ABox contains sentences indicating where in the hierarchy individuals belong (i.e., the relationship 

between individuals and concepts). For example: “"Every employee is a person,”" is related to TBox.  

“"Bob is an employee,”" is related to ABox. 

 

The FOL syntax is defined as a series of legal symbols in DL. In contrast to FOL, DL has some known syntactic 

variants. Different operators are defined by recursive definitions in the DL family. A group of these operators, such 

as intersection or conjunction of concepts, union or disjunction of concepts, negation or complement of concepts, and 

universal and existential restrictions, are presented in FOL. Other operators, such as inverse, transitivity, and 

functionality involving operators with limitations on roles are related to FOL. A list of operators and DL symbols are 

presented in Table 2. In addition to showing the formal relationships among concepts, DL must be able to answer the 

questions about certain concepts. Database-query-likes are the most commonly proposed queries, such as: 

1. Instance checking [is a particular instance (member of ABox and member of a particular concept)]. 

2. Relation checking (includes a relationship/role between two instances; in other words, A has the same 

attributes as B). 

3. Subsumption (is a concept that is a subset of another concept). 

4. Concept consistency (there is no contradiction among the definitions or chain of definitions). 

In addition to the reasoners presented in Table 3, reasoning can also be used in various search engines. In other words, 

semantic search engines use reasoning on semantic data and RDF data when answering the related query.  The 

following tables, provide a list of semantic search engines that use reasoning, and their reasoning types. 

 

 JESS [52] is an SWRL-enabled rule-based reasoner like PELLET [49], KAON2 [53], HOOLET [3], SHER [54]. The 

rule-based reasoner employs "If-Then-Else" statements and has two reasoning strategies: forward and backward 

chaining. The main challenge for rule-based reasoners is to change the number or all of the rules in the inference every 

time a change is made. These challenges make changes and maintenance difficult for this type of reasoner. The table 

below lists some other reasoners as variations of rule-based reasoners whose basis is the "If-Then-Else" statements. 

Some other reasoners like FACT [55] and FACT ++ [56] are not rule-based. They are tableaux-based reasoners for 

expressive description logics covering OWL and OWL2. This type of reasoners is based on formal logic and is more 

descriptive like rule-based reasoners. Therefore, description-logic-based reasoners are very complicated to design and 

implement. Nevertheless, they are very descriptive and can be easily adapted to reasoning strategies since the main 

concepts of description logic are applied to the reasoning algorithm. 
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Table 1: List of Descriptive logic Reasoners with their supported services 

Supported Reasoning Services 
Details License Institution Reasoner 

OWL Realization Explanation Consistency Entailment Satisfiability 

Yes No Yes Yes Yes Yes Probabilistic reasoner based on Pellet AGPL License version 2.0 University of Ferrara BUNDLE [32] 

Yes No No Yes No Yes 
Lisp-based reasoner 

 

Apache License 2.0 (CEL) / GNU Lesser 

General Public License 3.0 

Technische Universität 

Dresden 
CEL [33] 

Yes No No No No 

 

No 

 

Reasoner for conjunctive query answering over Horn-SHIQ ontology 

via query rewriting 
Apache 2.0 

Vienna University of 

Technology 
Clipper [34] 

No No No Yes No Yes scalable reasoner for OWL ontologies with very large Aboxes GNU General Public License University of Malaga DBOWL [35] 

Yes Yes Yes Yes Yes Yes Fuzzy rough Description Logic reasoner Published under NA Not given DeLorean  [36] 

Yes No No Yes Yes No 
OWL reasoner that supports distributed reasoning over a networked 

ontologies 
LGPL 

University of Paris 8, 

IUT of Montreuil 
DRAGON [37] 

Yes No No No No No 
DReW is a reasoner for DL-Programs over Datalog-rewritable 

Description Logics for Conjunctive query Answering 
Apache 2.0 

Vienna University of 

Technology 
DReW [38] 

Yes No No Yes Yes Yes 
Free open-source Java-based reasoner for EL+ and supports parts of the 

OWL 2 EL profile 

Apache License 2.0 and GNU Lesser 

General Public License 3.0 

Technische Universität 

Dresden 
Jcel [39] 

No Yes No Yes Yes Yes 
Parallel, high-performance reasoner for the Description Logic 

SROIQV(D) 
LGPL 2.1 

University of Ulm, 

derivo GmbH 
Konclude [40] 

 

No 

 

No No Yes Yes 

 

Yes 

 

Lightweight Fuzzy DL Reasoner, capable of performing in resource-

constrained devices 
GNU LGPL 

Centre for Research 

and Technology Hellas 

(CERTH) 

LiFR [41] 

Yes No No No No Yes 
MORe uses module extraction techniques to classify ontologies 

combining reasoners especially optimised for different OWL 2 profiles 
GNU Lesser GPL University of Oxford MORe [42] 

Yes Yes No No Yes No 
Reasoner for log-linear description logics, a probabilistic logical 

formalisms that combines description logics and log-linear models 
GNU GPL v3 Not given ELK [44] 

Yes No No Yes Yes Yes 
Free Java/C++ based reasoner for fuzzy SHIF with concrete fuzzy 

concepts 
Published under NA ISTI – CNR fuzzyDL  [45] 

No Yes No No No No Distributed reasoner that runs on a cluster of machines Published under NA Wright State University DistEL [46] 

Yes Yes No Yes Yes Yes OWL 2 DL reasoner for very large ontologies LGPL 
University of 

Manchester 
Chainsaw [47] 

Yes Yes Yes Yes Yes Yes Forward-Chaining inference engine based on Rette 
Academic and research use free of 

charge 
VIStology Inc. 

BaseVISor 

[48] 

Yes Yes Yes Yes Yes Yes Free open-source Java-based reasoner for OWL 2 and SWRL AGPL v3 Clark & Parsia, LLC Pellet [49] 

No Yes No Yes Yes Yes pure Java port of FaCT++, with versions for Owlapi 3.x and 4.x LGPL 
University of 

Manchester 
JFact [50] 

Yes Yes No Yes No No 

Consequence-based reasoner that currently supports part of the OWL 2 

EL fragment for the reasoning tasks classification, consistency and 

realization. 

Apache License, Version 2.0 Not given ELepHant [51] 

Yes Yes Yes Yes Yes Yes 
Free (LGPL) highly optimised open-source C++-based tableaux 

reasoner for OWL 2 DL 
LGPL 

University of 

Manchester 
FaCT++ [5] 

Yes Yes Yes Yes Yes Yes OWL 2 DL reasoner LGPL University of Oxford HermiT [4] 
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Table 2: List of operators and DL symbols 

Read Example Description Symbol 

Top ⊺ ⊺ is a special concept with every 

individual as an instance 
⊺ 

Bottom ⊥ Empty concept ⊥ 

C and D 𝐶 ⊓ 𝐷 Intersection or conjunction of concepts ⊓ 

C or D 𝐶 ⊔ 𝐷 Union or disjunction of concepts ⊔ 

Not C ¬𝐶 Negation or complement of concepts ¬ 

All R-successors are in C ∀𝑅. 𝐶 Universal restriction ∀ 

An R-successor exists in C ∃𝑅. 𝐶 Existential restriction ∃ 

All C are D 𝐶 ⊑ 𝐷 Concept inclusion ⊑ 

C is equivalent to D 𝐶 ≡ 𝐷 Concept equivalence ≡ 

C is defined to be equal to D 𝐶 ≐ 𝐷 Concept definition ≐ 

a is a C 𝑎: 𝐶 Concept assertion : 
a is R-related to b (𝑎, 𝑏): 𝑅 Role assertion : 

 

 

Table 3: List of search engines with reasoners 

Rule Support 
Reasoning 

Algorithm 

Supported Expressivity For 

Reasoning 

OWL-DL 

Entailment 
Search Engines 

Yes (SWRL-DL 

Safe Rules) 
Tableau SROIQ(D) Yes PELLET [49] 

Yes (SWRL) Rule – Based - Yes JESS [52] 

Yes (SWRL-DL 

Safe Rules) 

Reasoning & 

Datalog 
SHIQ(D) Yes KAON2 [53] 

Yes (SWRL) 
First-|Order 

Prover 
- Yes HOOLET [3] 

Yes (SWRL-DL 

Safe Rules) 
Rule – Based SHN Yes SHER [54] 

No Tableau SHIQ Yes FACT  [55] 

No Tableau SROIQ(D) Yes FACT++ [56] 

Yes (SWRL-not 

fully support SWRL) 
Tableau - Yes RACERPRO [57] 

Yes (own Rule 

Format) 
Rule - Based 

Varios Reasoner 

(incomplete for nontrivial 

description logic) 

Yes JENA [58] 

Yes (own Rule 

Format) 
Tableau - Yes F-OWL [59] 

Yes (SWRL, 

RuleML, Jess) 
Rule - Base - No 

SWEETRULES 

[60] 

Yes (own Rule 

Format) 
Rule - Based R-entailment No OWLIM [61] 

Yes (SWRL, 

RuleML, Jess) 
Rule - Based R-entailment No BASEVISOR [62] 

 

4.0   METHODOLOGY 

As mentioned in the previous part, ontology reasoning has significant limitations in its realization; therefore, this 

study aims to find a solution to improve it. The main limitation of ontology reasoning is its inability to solve the 

realization problem. Until now, various solutions have been used to overcome this inability. 

 

The approach used in this study is to logically separate the realization problem. In other words, instead of choosing 

a particular subcategory of ontology, this study finds an answer to the realization problem by dividing it into some 

subcategories and then solving these subcategories. In this way, computational cost and inefficiency are avoided 

by minimizing the problem. In general, the advantages of this innovation can be summarized as follows: 
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1. Solving the realization problem in semantic reasoning. 

2. Break up the realization problem to subsumption and satisfiability problems. 

3. Solving the realization problem in Polynomial time. 

4. Reasoning time is improved and the faster response is achieved. 

5. Better precision and proficiency vis-a-vis the existing methods 

In general, the realization problem can be divided into the following subcategories: 

 

* Satisfiability of the concept: diagnosis of the concept considering the individual's affiliation based on their 

description. 

* Subsumption of the concept: determining whether d concept d follows c, which means that c is more general 

than d. 

 

In contrast, the realization problem can be defined as “"finding a concept considering where an individual has the 

most attachment.." To solve either of the above two problems, it is necessary to separate them and integrate their 

results. 

 

Based on the definition of DL, each DL-based reasoning system consists of a TBox and an ABox, which we have 

already discussed. 

 

Then, having a common TBox and ABox is necessary to solve and integrate the two problems [63]. However, 

TBox possibly expands from one problem to another, but it does not harm the totality of the problem. Thus, the 

following theorem is considered [63]: 

 

Theorem 1: Assume that T is an acyclic TBox (terminology) and T′ is its expansion. Then: 

 

1. T and T′ have the same name and symbol. 

2. T and T′ are equivalent. 

3. Both T and T′ are definitorial. 

 

Proof: 𝑇1 is a terminology. Assume 𝐴 ≡ 𝐶 and 𝐵 ≡ 𝐷 are 𝑇1 definitions that B occurs in C. By contrast, assume 

C′ is a concept that is resulted from the substitution of each B repetition in C with D and assume that 𝑇2 uses a 

terminology that is resulted from the substitution of 𝐴 ≡ 𝐶 with 𝐴 ≡ 𝐶′ in 𝑇1. 

 

Thus, both terminologies have the same name and symbol. Both terminologies have the same model because 𝑇2 

resulted from 𝑇1 through a substitution.  

 

Then, satisfiability and subsumption can be solved at the same time by considering the same TBox and ABox for 

a domain. The realization problem is formally defined before solving any of these problems. All the following 

formal definitions are extracted from [63]. 

 

Definition 1 (realization): 

Given an ABox of A, Concept C, individual a and a set of concepts, find C as the most specific concepts from the 

set such that A ⊨ C(a). 

An individual is called a and a collection of concepts are given. Find c (most specific concept) from the collection 

of concepts, such that A ⊨ C(a) . 

The definition of the most specific concept is as follows: 

 

Definition 2 (most specific concept): 

Assume A is an ABox in DL and a is an individual in A. C concept is called the most specific concept for a. Based 

on A, MSC(A,a) can be written for each b concept in DL. A ╞ D(a) implies that C ⊆ D. 

Clearly, when MSC (A,a) is specified to determine whether a is an example of D concept, it is enough to check 

whether MSC(A,a) follows D concept. 
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As mentioned previously, the realization problem involves finding an individual that has the most relevance to a 

concept. Then, the difficulty regarding the reasoning of this problem involves finding the most relevance to a 

concept, which needs a full investigation of the TBox and ABox structures. 

 

This study aims to solve the realization problem by solving subsumption and satisfiability, which are simple 

problems. First, the formal definitions are discussed. Then, the main method is presented. 

 

Definition 3 (satisfiability): 

Based on T, C concept is satisfiable if the  I model exists in T, such that 𝐶𝐼 is not empty. 

 

Definition 4 (subsumption): 

Let T be a TBox (terminology), a concept C is subsumed by a concept D with respect to T if 𝐶𝛪 ⊆ 𝐷𝛪 for every 

model 𝛪 of T. In this case, we write 𝐶 ⊑𝑇 𝐷 or𝑇 ⊨ 𝐶 ⊑ 𝐷. 

By contrast, in specific conditions, the satisfiability problem may turn into the subsumption problem. Thus, 

solving the subsumption-like subcategories to meet the realization satisfaction is enough to solve the realization 

problem. Based on [63], satisfiability can be decreased into subsumption. Consider the following theorems: 

 

Theorem 2: For D and C concepts: 

C is unsatisfiable if and only if C is subsumed by empty concept ⊥. 

Proof: Refer to [63]. 

 

Theorem 3: For D and C concepts: 

C and D are equivalent if and only if C is subsumed by D and D is subsumed by C. 

Proof: Refer to [63]. 

Based on the two previously presented problems, the realization problem can be solved solely through 

subsumption. Thus, for solving realization: 

 

1. Assume A is the collection of concepts in realization and a is the individual. 

2. The satisfiability problem for A collection is solved based on a, and the collection of concepts is assumed 

to satisfy a in R collection. 

3. The subsumption is solved for all possible pairs of R collection, and MSC(R,a) is achieved. 

4. According to the fact that satisfiability is reducible to subsumption, at the second level, subsumption is 

used to solve the satisfiability problem. 

 

The main challenge is the efficiency of this method for collections with a large number of concepts. In the 

following part, an algorithm for reducing and optimizing the primary concept collection is presented. In other 

words, a solution to the ontology partitioning problem is derived. After partitioning the ontology into different 

sub-ontologies, the procedure for solving the realization problem for one of the sub-ontologies is performed. 

In ontology partitioning, ontology O is partitioned into a collection of modules, that are not necessarily disjoint, 

such that the union of all modules is equal to O. The partition function is then formally defined as follows: 

 

Definition 5 (ontology partitioning function): 

 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑂) → 𝑀 = {{𝑀1, 𝑀2, … , 𝑀𝑛}|{𝑀1 ∪ 𝑀2 ∪ … ∪ 𝑀𝑛} = 𝑂} 

 

According to the fact that correlation among concepts is achieved through the ontology structure, an acyclic graph 

is used for ontology partitioning. 

 

In this case, graph O = (C,D), where C is the collection  of concept and D is the dependency collection of concepts. 

Then, this procedure ontology is changed into a multipartite graph, such that the result of the query might exist in 

one or some parts of the graph. If the query results exist in one part of the graph, then only that part of the graph 

is investigated because of its independence from different parts. Other ontology parts are not checked.  
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The proof of the presented idea is as follows: 

 

Let suppose that, after doing the graph partitioning, the related part of ABox A (with Tbox T) to query q is p. 

Then, we solve the satisfiability problem in p: 

 

∃ 𝐼 ∈ 𝑝, 𝐶𝐼  𝑖𝑠 𝑛𝑜𝑡 ⊥                                                               (1) 

 

So, we find all C in p that are satisfiable and put them all in R: 

𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}, 𝑅𝑖  𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑖𝑛 𝑝           (2) 

 

Then, for all pairs of satisfiable concepts in R, we solve subsumption problem as follows: 

∀(𝑖1, 𝑖2) ∈ 𝑅, ∀ 𝐼 ∈ 𝑇         𝐶𝐼 ⊑ 𝐷𝐼                                       (3) 

 

If i1 is subsumptive to i2, then i1 is removed from R. We apply relation (3) for every pair of i1 and i2 since there 

is no candidate i1 and i2 and we name new R as 𝑅′. Then we apply all concepts in 𝑅′ to individual a  such that: 

 

∀𝐶 ∈ 𝑅′     𝑖𝑓 𝐴 ⊭ 𝐶(𝑎) 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝐶 𝑓𝑟𝑜𝑚 𝑅′                (4) 

 

So 𝑅′ has a candidate 𝑚𝑠𝑐(𝐴, 𝑎) such that the real most specific concept A and a is in 𝑅′. 

 

On the other hand, according to theorem 1,2,3 and [63] we can solve satisfiable problem (relation (1)) using only 

the subsumption problem. So we find candidate solutions for realization problem in reasonable time and we use 

only the subsumption problem.  

 

The general problem solving procedure is the same as it is shown in Figure 1. The pseudo code of the algorithm 

is shown in Figure 2. 

 

In line 3 from Fig 2, we used ontology partitioning algorithm based on [64] approach which describes that using 

the pseudo code format in Fig 1. After partitioning ontology into parts and selecting a relevant part(s) in the 

ontology partitioning phase, the important point is to combine and merge query answers from relevant parts to 

produce the final answer. 

In other words, we must prove that the final answer can be produced from instance checking through independent 

Abox. Before the definition of respective theorem, we should declare some relevant terms [65]. 

 

Definition 6: Abox graph 

One Abox graph for Abox A, is AG (A) that contains vertex set V, edge set U and the following function: 

 

F: E → { (a, b)| a, b ∈  A}                                                      (5) 

 

Each vertex is related to one individual and AG (A) is directed as a multipartite graph. 

 

Definition 7: (Abox dependency) 

Two connected Abox A1 and A2 are given such thatA = A1 ∪ A2. If A1, A2 are dependent, Abox graph A is 

connected, and If A1, A2 are independent, Abox graph A is disconnected. 

So, we can declare the following theorem. 

 

Theorem 4: Independent Abox and Instance checking  

Two connected Abox A1 and A2 are given such thatA = A1 ∪ A2. If A1, A2 are independent then for each query 

realization, we have  Φ and Tbox T: 

 

< T, A >⊨  Φ if and only if  < T, A1 > ╞ Φ or < T, A2 > ╞ Φ. 
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Fig.1: Overall proposed process 

 

 
 

Fig.2: Proposed algorithm for the realization problem 
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Fig.3: Overlapped Ontology Partitioning 

Proof:  

(→) 

Suppose that A1 and A2 are independent and ∆A1

I , ∆A2

I  are domains of A1 and A2, then: 

    ∆A1

I  ∩  ∆A2

I = ∅                                                     (6) 

For each concept C, CA1

I  ∩  CA2

I = ∅ which CAi

I  is extended C in ∆Ai

I . 

On the other hand, suppose that < T, A1 >⊭  Q and < T, A2 >⊭  Q which means: 

∃I1; I1╞A1, I1╞T, I1╞¬Q                                                (7) 

        ∃I2; I2╞A2, I2╞T, I2╞¬Q                                               (8)  

Which I1 and I2 are explanations of A1 and A2. 

Since A = A1 ∪ A2 and ∆1
I ∪ ∆2

I = ∅, we can create the explanation from A like I which 𝐼 = 𝐼1 ∪ 𝐼2. In other words 

I =< ΔI, ΟI > that declare as follows: 

(i) ∆I= ∆1
I ∪ ∆2

I  

(ii) For any constant a, aI = {
aI1  if a occurs in A1

aI2if a occurs in A2

} 

)iii) for any concept C,CI = CI1 ∪ CI2 

(iv) For any role R, RI = RI1 ∪ RI2 

So, we can conclude from I1╞¬Q, I2╞¬Q and (iii): 

I╞ ¬Q                                                                          (9) 

Which means: 

(¬Q)I = (¬Q)I1 ∪ (¬Q)I2                                          (10) 

That I is an explanation of A. On the other hand we can conclude from (ii), (iii) and (iv) that: 

(A)I = (A1)I1 ∪ (A1)I2                                                (11) 

Because A1 and A2 are consistent, we just prove no intersection between them. 

For Concept C from DL, we have: 

CI ⊆ CI                                                                        (12) 

On the other hand, we have: 

(¬C)I = (∆I\∆I) ⊆ ∆I                                                (13) 

Then, for C, we have: 

CI1 ⊆ ∆1
I  and (¬C)I2 ⊆ ∆2

I                                          (14) 

Because of ∆1
I ∩ ∆2

I = ∅, then: 

CI1 ∩ (¬C)I2 = ∅                                                       (15) 

This means they have no intersection. Since, we have the explanation I from A: 

Since, we have the explanation I from A: 

(A)I ≠ Q and (¬Q)T ≠ Q                                           (16) 

Then: 

I╞ A∩ I╞ ¬Q                                                               (17) 

Which is an A⊯Q definition.  

Therefore, A╞ Q if A1╞ Q or A2╞ Q that result is <T,A>╞ Q if <T,A1>╞ Q or <T,A2>╞ Q. 
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(←) 

We suppose that <T,A1>╞ Q  or <T,A2>╞ Q. In both cases we have: 

<T,A1 ∪ A2>╞ Q                                                          (18) 

  Which <T,A >╞ Q.  

 

5.0    ILLUSTRATION THE EXAMPLE       

In this section, we describe the proposed algorithm and give an example of identifying the concept that is closest 

to the query, i.e., the realization concept. 

 

Step 1: 

In this step, the ontology is partitioned, and the presented ontology is divided into separate parts. The solution 

to the realization problem is not obtained from the whole ontology but from the partitions associated with 

the query. 

In this example, we use the automotive production ontology. The following partitions are produced created 

after partitioning the ontology. 

Step 2: 

Suppose the query is as follows: 

"When was the car with a 3500 cc engine produced?" 

First, the term 3500 cc is searched in the ontology. Then the concept is identified in the sub-ontology of 

"car manufacturer B." So, the remaining steps of this algorithm are performed only in this sub-ontology. 

 

Step 3: 

The solution to the realization problem in the sub-ontology of car production B is discussed.  

Let us assume that the structure is as shown in the following figure. 

Step 4:           

The satisfiability problem is solved for car production B. Thus, the set of concepts that concludes car 

production B or the concepts that satisfy A must be identified.  

Therefore, R is obtained as follows: 

R = {Iran khodro, products of 2004, ‘206’ and petrol and chassis and motor} 

 

Car production (A)                   Car production (b)                         Car production (C) 

 

Fig.4: An excerpt of the Car Manufacturing model indicating (a) Classes, (b) Data Type Properties, (c) Object 

Properties and (d) Individual 
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Fig.5: Car Manufacturing Ontology 

      Step 5: 

 The subsumption problem is implemented as all possible pairs in the R set. See Fig. 6. 

  Therefore, the most specific concept has the following elements: 

Msc (Iran khodroo, 3500 cc) = (206, products of 2004). 

 

Step 6: 

As proven by Theorem 4, the final answer to the query is the sum of this response. 

Answer: {206, products of 2004) 

 

 

 

Fig.6: Subsumption problem 

 

Motor Chassis with petrol fuel 206 Products of 

2004 

Chassis is more 

general than motor 

206 is more general 

that petrol 

206 is more general 

Cannot be reduce to 

any member 
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6.0 RESULT ANALYSIS      

 

The method proposed in [66], which has a standard structure for the evaluation of ontology reasoning is used to 

assess the proposed method. The ORE framework presented in [66] is the framework for the OWL reasoner 

evaluation. The framework is tuned for UNIX-based operating systems. The ORE framework can be applied to 

any given reasoner and set of ontologies. Each reasoner my implement in the specific folder structure to evaluate 

with this framework. It supports two components for test and verifies the reasoners. The reasoner presented in this 

article are customized with the mentioned specific structure of the ORE framework and the results of the ORE 

test output are reported below. 

The data set is used in the framework which was produced by the ontology Reasoner Evaluation Workshop in 

2014 [67]. The criteria for assessment of the introduced reasoners in this framework are as follows: 

1. Realization 

2. Classification 

3. Consistency 

The proposed method is compared with the HermiT [30] and FaCT++[31] reasoners based on the aforementioned 

parameters . The JFaCT reasoner is the JAVA implementation of the FaCT++ reasoner, and their differences are 

presented in Table 4[67]. 

Table 4: Comparison between JFaCT and FaCT++ 

 
FaCT++ JFaCT Characteristics 

EL, RL, QL, DL OWL2 profile supported 

OWLAPI, LISP OWLAPI Interfaces 

Tableaux Tableaux Algorithms 

N/A Same as FaCT++ Optimizations 

good general performance Pure Java; extended DT Advantages 

OWLAPI interface is 

complicated 
Work in progress Disadvantages 

General purposes Application focus 

 

The results of the comparison between the proposed method and the above reasoners based on three parameters 

are shown in Tables 5 to 7. 

 
The scores in the tables indicate the accuracy of the answers given by the reasoner. In other words, a score of 253 

out of 264 means that 253 out of 264 questions were answered correctly. The error rate shows how many wrong 

answers were given by the reasoner. 

 
The tables clearly show that the proposed method outperforms the other ones in terms of the three parameters. 

 

Table 5: Comparison of different methods based on the Realization parameter 

Time(s) Error Score Reasoner Rank 

545.68 s 11 253/264 Proposed Reasoner 1 

1111.3 s 92 172/264 FaCT++ 2 

2934.9 s 101 163/264 HermiT 3 

3022.5 s 102 162/264 HermiT-OA4 4 

 

Table 6: Comparison of different methods based on the classification parameter 

Time(s) Error Score Reasoner Rank 

1318.18 s 14 292/306 Proposed Reasoner 1 

5808.2 s 69 237/306 HermiT-OA4 2 

5416.4 s 70 236/306 HermiT 3 

1361.3 s 106 200/306 FaCT++ 4 
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Table 7: Comparison of different methods based on the consistency parameter 

Time(s) Error Score Reasoner Rank 

1501.6 s 6 300/306 Proposed Reasoner 1 

1449.6 s 12 294/306 HermiT 2 

1549.4 s 13 293/306 HermiT-OA4 3 

1341.2 s 30 276/306 FaCT++ 4 

 

Fig.7: Comparison of elapsed average time for reasoners in seconds 

7.0    CONCLUSION     

This study proposed an efficient method to solve the realization problem based on the satisfiability and 

subsumption problems. The computational complexity is the main problem in solving the realization problem. 

The proposed method compensated this drawback to a certain extent. The proposed method is implemented in the 

form of a standard reasoner and it is compared with other reasoners in a standard framework. The results revealed 

an optimized performance compared to previous studies. For conducting future studies, the main challenge is to 

overcome the time complexity of the realization problem that needs different methods, such as random 

probabilistic, approximate, genetic, and exploratory algorithms. 
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