
A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

37

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

A METHOD FOR IMPROVING REASONING AND REALIZATION PROBLEM SOLVING IN

DESCRIPTIVE LOGIC- BASED AND ONTOLOGY-BASED REASONERS

Mojtaba Shokohinia1, Abbas Dideban2*, Farzin Yaghmaee 3

1,2,3Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran

E-mail: mshokohinia@semnan.ac.ir 1, adideban@semnan.ac.ir 2* (corresponding author),

f_yaghmaee@semnan.ac.ir 3

DOI: https://doi.org/10.22452/mjcs.vol35no1.3

ABSTRACT

Recently, many methods have been developed for representing knowledge, reasoning, and result extraction extracting

results based on the respective domain knowledge in question. Despite the ontological success in knowledge

representation, the reasoning method has faces some challenges. The main challenge in ontology reasoning methods

is the failure in solving realization problems in the reasoning process. Apart from the complexity of solving realization

problems, this already daunting challenge is compounded by computational complexity the time complexity of the

solving realization problem solving process problems is equal to that of NEXP TIME. This important issue problem

is achieved solved by solving the subsumption and satisfiability problems. Thus, to solve the realization problem, we

first partition the ontology or extract partitions related to the query. Then, the satisfiability problem is solved by

extracting partitions, and all concepts related to the query are extracted. This study proposes a method to overcome

this problem, where a new solution is proposed with an appropriate time position. Finally, the efficiency of the

proposed method, is evaluated against other reasoning engines, and the results show optimized performance vis-a-

vis previous studies.

Keywords: Semantic Web, Reasoning, Descriptive Logic, Ontology, Subsumption

1.0 INTRODUCTION

Data are mainly used in real-world and laboratory applications. However, due to the special aspects arising from the

nature of the data, challenges also arise. One such challenge, one of which is the efficient and careful processing of

real-world data or data analysis for reasoning and extraction of its rules and inherent logic. When the data are semantic,

this problem becomes even more difficult. Thus, the reasoning type must be semantic and correspond to the data. In

recent years, scholars have conducted done considerable research in the field of reasoning, especially semantic

reasoning, to accelerate this area of research. The main goal of research in the field of reasoning is to improve machine

understanding in the automatic process of reasoning. Generally, different types of reasoning, such as abductive

reasoning, backward reasoning, and comparative reasoning, are used in their specific fields and applied to automatic

and machine reasoning during the year. It describes a type of reasoning in which the hypothesis generation process is

a description of the data [1]. In this study, abductive reasoning with ontological use is presented. First, the use of this

type of reasoning in ontology is discussed. Then, the function of this type of reasoning in ontology is examined by

defining some scenarios. Moreover, reasoning is the main problem in OWL-DL, which requires high computational

cost. The integration of rules makes reasoning indecisive. In addition to the above limitations, ontology reasoning in

OWL-DL has many practical limitations. In other words, the normal solution to obtain rich data using ontological

reasoning is to solve the realization problem. Realization in OWL-DL is about finding the most specific classes to

which an individual belongs; in other words, it is about computing the direct types for each individual. Realization is

about finding the most relevant class of objects. However, realization is a problem with time complexity equivalent

to that of NEXP TIME. The online performance of ontological reasoning has fundamental scalability and execution

time issues, especially when the ontology has many individuals [2]. So far, various optimizations have been presented

by relational database techniques to improve the reasoning performance of OWL-DL. Instance store is one of the most

popular methods [3], which also has crucial limitations in reasoning over RDF data.

mailto:mshokohinia@semnan.ac.ir
mailto:adideban@semnan.ac.ir
mailto:f_yaghmaee@semnan.ac.ir

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

38

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Recently, many methods have been developed for representing knowledge, reasoning, and extraction results. Despite

the ontological success in knowledge representation, the reasoning method faces some challenges. The lack of problem

realization in the reasoning process is the most important challenge in ontology reasoning. Apart from the complexity

of solving realization problems, this already daunting challenge is compounded by computational complexity. The

time complexity of realizing and solving the problem is equal to NEXP time. In this study, an optimal solution with

reasonable time complexity is proposed. In this study, the realization problem has been divided into its concepts and

smaller sub-problems and solved to improve the ontology reasoning process. The main goal is to overcome the

realization complexity. This is done by solving the subsumption problem and the satisfiability problem. To solve the

realization problem, the ontology is first partitioned, or partitions are related to the query. Then, the satisfiability

problem by extracting partitions, and extracting all concepts related to the query are extracted. Next, the subsumption

is solved for each identified pair of concepts in the satisfiability problem is solved until the end of the presented

algorithm. Concepts that are not included in each of the subsets are considered as answers to the query. The following

two issues need to must be considered.

First, the concept of the query is the solution to the realization problem of individual A. For this concept, the most

specific concept with respect to individual A is identified and then extracted. Second, at the end of the presented

algorithm, the same concepts that are candidates for the most specific concept are obtained, whose sum is the final

answer to the query. Thus, the new concepts are the best answer to the realization problem. In rare cases, it may also

be an empty set where the sum of several empty sets is empty. The results show that this method works accurately.

Thus, more time is saved and a faster answer is obtained. Moreover, the ontology partition shows that the proposed

method achieves higher optimal proficiency than the existing methods. In the continuation of this article, the second

part is dedicated to the literature review. The third part introduces descriptive logic and reasoning as basic concepts.

The fourth part presents the methodology. The fifth part also provides a relevant example. The sixth part analyzes the

results and studies the accuracy and execution time using the reasoning engines HermiT[4] and FaCT++ [5]. The

results show that the proposed method outperforms the other methods. Finally, the seventh section is dedicated to the

conclusions of the study.

2.0 LITERATURE REVIEW

This section describes the work done in this regard. A reasonable and thorough proof method for backward

compatibility reasoning is presented, as well as a fully abstract trace-based semantics for class libraries [6]. The

authors of [7] suggest a modular reasoning system that reuses code by using uninterpreted predicates. A collection of

publications on the history of medical sciences to find recurrent patterns of queries is examined in [8]. According to

the suggested paradigm, the queries are represented in SQWRL, which provides a mechanism for applying temporal

reasoners to answer inquiries about the history of science. Comparative reasoning models for various applications,

such as RDF data where an agent is compared to other agents, are investigated by [9], [10]. A distributed reasoner

with excellent efficiency in [11] is expressed. Its main limitation is that it only supports classification. More precisely,

it is a distributed ontology classifier. According to [12], this reasoner is a meta-reasoner that uses a set of reasoners

for inference, with its main drawback being its operation and query structure writing, which have made it unpopular.

A free and open-source reasoner is introduced in [13]. Although this lightweight reasoner is highly efficient, it does

not support many of the capabilities of a reasoner. The authors of [14] present the quality of crowdsourced relevance

judgments regarding the ability to reason. This reasoner uses a forward-chaining inference engine whose efficiency is

high and whose main problem is that it does not support the classification problem. A special model for inductive

reasoning for searches and queries in the semantic web is presented in [15]. The main problem of this reasoner is its

non-scalability, reducing its efficiency for large data sets. This model starts with detailed and specific rules and ends

with general rules. The authors of [16] describe an automated user interface based on reasoning, a free and open-

source Java programming language. This reasoner is an OWL 2 DL reasoner with excellent efficiency on small data

sets. However, its efficiency decreases significantly as the volume of the ontology increases. One of the challenges

with a search engine that considers semantic information is that it requires index information beyond the stored

traditional information, including entity mentions and type relationships [17]. Moreover, the performances of different

and the same data structure types are discussed, the different indexes are described, and the appropriate index type for

semantic search under different conditions is determined. In [18], query ambiguity resolution by query expansion

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

39

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

using a statistical linguistic technique during semantic query formulation is described to retrieve relevant answers

from a Holy Quran ontology. Finally, [19] presents a black-box approach to parallelizing current description logic

(DL) reasoners for the Web Ontology Language (OWL), resulting in a parallel framework that can be used to existing

OWL reasoners to speed up their categorization process.

Backward reasoning is another type of reasoning where the intended goal of the reasoning process is approached

backward in order to examine the effective factors in achieving particular goals. This method is particularly in line

with optimization. From another point of view, semantic reasoning can be divided into four classes. The solutions for

semantic data reasoning model can also be divided into four main categories as follows:

The first group has extended the display of semantic data to add rules and facts to evaluate the capability of reasoning

rules. The main shortcoming of these methods is that with the modification and extension of semantic data to improve

reasoning ability and define rules and facts, the data usually lose their essential and natural structure as well as their

main semantic features [20], [21], [22]. The second group includes usage-based methods. In other words, in these

methods, the data are transformed into an ontology structure, and the semantic data are used in the common reasoning

model of these data to improve the quality of usage. For example, in an IP TV recommender system, semantic data

and current ontologies are used to infer the appropriate recommendations for each user [23], [24]. The third group

includes the methods in which the data model and the type of reasoning in semantic data are first converted into a

logic model, such as first-order logic (FOL) or other logic types, and then one of the reasoning mode in logic is used

to conduct reasoning on semantic data [25], [26], [27].

The fourth group is the same as the third group, with only one difference. That is, in addition to converting the semantic

data structure into temporal logic, the semantic data themselves are converted to the temporal data structure, and

reasoning is performed by the middle logic on temporal data [28], [29]. According to [28], [29]. Compared with other

simpler, informal, and innovative methods, ontological methods not only have more advantages in their simplicity but

also in their integration. The development Ontology Web Language-Descriptive Logic (OWL-DL)-based ontology

models shows that this technique is sometimes inefficient in defining and understanding complex relationships and

descriptions. Therefore, the constructors in the OWL-DL language are chosen to support the decidable reasoning

process. Any process beyond that has no possibility of reasoning in OWL-DL [30]. Therefore, OWL-DL does not

include explicit constructors, such as user activities, which may be useful for modelling complex domains. Recently,

the semantic web community has conducted studies on the possible extension of OWL-DL features, the results of

which are logical languages, such as SWRL, as used in [31].

See Table 1 for a list of reasoners and their supporting features. One of the main features of the reasoner is realization,

which is the most complex problem in DL. The authors introduce the concept of bundle in [32]. However, as it uses

probabilistic and palette-based contexts, it requires a high computational cost and a long runtime, which is not efficient

for large data sets. [33] States one of the first reasoners for descriptive logic. The main drawback of this reasoner is

that it is used to solve subsumption problems and is not efficient for classification problems. [34] Introduces Clipper,

a reasoner for conjunctive query answering based on queries. The main drawback of this reasoner is its high time

complexity and inefficiency on large data sets. DBOWL reasoner is presented in [35], which is an OWL reasoner

whose main advantage is its scalability. An important disadvantage of this reasoner is that it has a precomputation

step, and the data must be precomputed before being input to the reasoner to convert it to the correct format for the

reasoner. DeLorean describes a fuzzy reasoner that implements fuzzy logic well [36]. The main limitation of this

reasoner is that the input data must be fuzzy, and it does not support non-fuzzy data. Another drawback of this reasoner

is its high time complexity. DRAGON [37] is an OWL reasoner used in a distributed manner. The main disadvantage

of this reasoner is that it does not support the classification problem and, therefore, cannot be used for some

applications. The authors of [38] present the a reasoner based on conjunctive query answering for DL programs. It

performs well in supporting descriptive logic, but its time complexity is very high, making it inefficient for real-world

applications. The jCEL reasoner is a rule-based reasoner designed for descriptive logic. This reasoner uses a rule-

based completion algorithm for inference. Its time and memory overhead are substantial (high time and space

complexity) [39]. The reasoner introduced in [40] is very efficient in terms of time complexity. An important property

of this reasoner is that it can reason in parallel until the inference is significantly reduced. However, its main drawback

is its inefficiency in solving classification problems, rendering it useless for some applications. [41] states LiFR

(Lightweight Fuzzy semantic Reasoner), which is a useful reasoner based on fuzzy logic. Since it is a first version and

lightweight, its efficiency is good; however, it does not support much of the descriptive logic. [42] is a prototypical

reasoner used to solve classification problems. Its performance in terms of time complexity is not reasonable, and it

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

40

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

does not support other descriptive logic problems. As can be seen in Table 1, only a few reasoners support the

realization function. Against this background, this study aims to solve the realization problem efficiently, and the

details are discussed in the following part. It proposes an efficient method for solving the realization problem based

on satisfiability and subsumption problems. Computational complexity is the main problem in solving the realization

problem. The proposed method manages to adequately address this drawback to some extent. The proposed method

is implemented in a standard reasoner and is compared with other reasoners in a standard framework. The results

revealed an optimized performance compared to previous studies. The criteria for assessment of the introduced

reasoners in this framework are realization, classification and consistency.

3.0 DESCRIPTIVE LOGIC AND REASONING

DLs belong to the formal family of knowledge representation. Many DLs are more accurate than propositional logic

and less accurate than FOL. The main problems of DLs are decidable such that a logical and competent procedure has

been developed for them. DLs are used in artificial intelligence to describe and reasoning about the relationships

between concepts in the application domain. DLs provide a formal and logical definition for ontologies and a semantic

web. General, DLs model concepts, roles, individuals, and correlations thereof. An axiom (i.e., a logical statement

related to the roles and/or concepts) is modelled in the most basic concept in DLs. Ontology is the precise and formal

description of the features of the context of study. In addition, it defines a common word for all researchers who want

to share information about a particular domain. In general, ontology languages presented for the semantic web are a

syntactic variant of DLs [43]. In DLs, there are two different meanings of Terminological Box (TBox) and Assertional

Box (ABox). In a general sense, TBox contains sentences describing concept hierarchies (i.e., the relationship between

concepts), while ABox contains sentences indicating where in the hierarchy individuals belong (i.e., the relationship

between individuals and concepts). For example: “"Every employee is a person,”" is related to TBox.

“"Bob is an employee,”" is related to ABox.

The FOL syntax is defined as a series of legal symbols in DL. In contrast to FOL, DL has some known syntactic

variants. Different operators are defined by recursive definitions in the DL family. A group of these operators, such

as intersection or conjunction of concepts, union or disjunction of concepts, negation or complement of concepts, and

universal and existential restrictions, are presented in FOL. Other operators, such as inverse, transitivity, and

functionality involving operators with limitations on roles are related to FOL. A list of operators and DL symbols are

presented in Table 2. In addition to showing the formal relationships among concepts, DL must be able to answer the

questions about certain concepts. Database-query-likes are the most commonly proposed queries, such as:

1. Instance checking [is a particular instance (member of ABox and member of a particular concept)].

2. Relation checking (includes a relationship/role between two instances; in other words, A has the same

attributes as B).

3. Subsumption (is a concept that is a subset of another concept).

4. Concept consistency (there is no contradiction among the definitions or chain of definitions).

In addition to the reasoners presented in Table 3, reasoning can also be used in various search engines. In other words,

semantic search engines use reasoning on semantic data and RDF data when answering the related query. The

following tables, provide a list of semantic search engines that use reasoning, and their reasoning types.

 JESS [52] is an SWRL-enabled rule-based reasoner like PELLET [49], KAON2 [53], HOOLET [3], SHER [54]. The

rule-based reasoner employs "If-Then-Else" statements and has two reasoning strategies: forward and backward

chaining. The main challenge for rule-based reasoners is to change the number or all of the rules in the inference every

time a change is made. These challenges make changes and maintenance difficult for this type of reasoner. The table

below lists some other reasoners as variations of rule-based reasoners whose basis is the "If-Then-Else" statements.

Some other reasoners like FACT [55] and FACT ++ [56] are not rule-based. They are tableaux-based reasoners for

expressive description logics covering OWL and OWL2. This type of reasoners is based on formal logic and is more

descriptive like rule-based reasoners. Therefore, description-logic-based reasoners are very complicated to design and

implement. Nevertheless, they are very descriptive and can be easily adapted to reasoning strategies since the main

concepts of description logic are applied to the reasoning algorithm.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

41

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Table 1: List of Descriptive logic Reasoners with their supported services

Supported Reasoning Services
Details License Institution Reasoner

OWL Realization Explanation Consistency Entailment Satisfiability

Yes No Yes Yes Yes Yes Probabilistic reasoner based on Pellet AGPL License version 2.0 University of Ferrara BUNDLE [32]

Yes No No Yes No Yes
Lisp-based reasoner

Apache License 2.0 (CEL) / GNU Lesser

General Public License 3.0

Technische Universität

Dresden
CEL [33]

Yes No No No No

No

Reasoner for conjunctive query answering over Horn-SHIQ ontology

via query rewriting
Apache 2.0

Vienna University of

Technology
Clipper [34]

No No No Yes No Yes scalable reasoner for OWL ontologies with very large Aboxes GNU General Public License University of Malaga DBOWL [35]

Yes Yes Yes Yes Yes Yes Fuzzy rough Description Logic reasoner Published under NA Not given DeLorean [36]

Yes No No Yes Yes No
OWL reasoner that supports distributed reasoning over a networked

ontologies
LGPL

University of Paris 8,

IUT of Montreuil
DRAGON [37]

Yes No No No No No
DReW is a reasoner for DL-Programs over Datalog-rewritable

Description Logics for Conjunctive query Answering
Apache 2.0

Vienna University of

Technology
DReW [38]

Yes No No Yes Yes Yes
Free open-source Java-based reasoner for EL+ and supports parts of the

OWL 2 EL profile

Apache License 2.0 and GNU Lesser

General Public License 3.0

Technische Universität

Dresden
Jcel [39]

No Yes No Yes Yes Yes
Parallel, high-performance reasoner for the Description Logic

SROIQV(D)
LGPL 2.1

University of Ulm,

derivo GmbH
Konclude [40]

No

No No Yes Yes

Yes

Lightweight Fuzzy DL Reasoner, capable of performing in resource-

constrained devices
GNU LGPL

Centre for Research

and Technology Hellas

(CERTH)

LiFR [41]

Yes No No No No Yes
MORe uses module extraction techniques to classify ontologies

combining reasoners especially optimised for different OWL 2 profiles
GNU Lesser GPL University of Oxford MORe [42]

Yes Yes No No Yes No
Reasoner for log-linear description logics, a probabilistic logical

formalisms that combines description logics and log-linear models
GNU GPL v3 Not given ELK [44]

Yes No No Yes Yes Yes
Free Java/C++ based reasoner for fuzzy SHIF with concrete fuzzy

concepts
Published under NA ISTI – CNR fuzzyDL [45]

No Yes No No No No Distributed reasoner that runs on a cluster of machines Published under NA Wright State University DistEL [46]

Yes Yes No Yes Yes Yes OWL 2 DL reasoner for very large ontologies LGPL
University of

Manchester
Chainsaw [47]

Yes Yes Yes Yes Yes Yes Forward-Chaining inference engine based on Rette
Academic and research use free of

charge
VIStology Inc.

BaseVISor

[48]

Yes Yes Yes Yes Yes Yes Free open-source Java-based reasoner for OWL 2 and SWRL AGPL v3 Clark & Parsia, LLC Pellet [49]

No Yes No Yes Yes Yes pure Java port of FaCT++, with versions for Owlapi 3.x and 4.x LGPL
University of

Manchester
JFact [50]

Yes Yes No Yes No No

Consequence-based reasoner that currently supports part of the OWL 2

EL fragment for the reasoning tasks classification, consistency and

realization.

Apache License, Version 2.0 Not given ELepHant [51]

Yes Yes Yes Yes Yes Yes
Free (LGPL) highly optimised open-source C++-based tableaux

reasoner for OWL 2 DL
LGPL

University of

Manchester
FaCT++ [5]

Yes Yes Yes Yes Yes Yes OWL 2 DL reasoner LGPL University of Oxford HermiT [4]

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

42

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Table 2: List of operators and DL symbols

Read Example Description Symbol

Top ⊺ ⊺ is a special concept with every

individual as an instance
⊺

Bottom ⊥ Empty concept ⊥

C and D 𝐶 ⊓ 𝐷 Intersection or conjunction of concepts ⊓

C or D 𝐶 ⊔ 𝐷 Union or disjunction of concepts ⊔

Not C ¬𝐶 Negation or complement of concepts ¬

All R-successors are in C ∀𝑅. 𝐶 Universal restriction ∀

An R-successor exists in C ∃𝑅. 𝐶 Existential restriction ∃

All C are D 𝐶 ⊑ 𝐷 Concept inclusion ⊑

C is equivalent to D 𝐶 ≡ 𝐷 Concept equivalence ≡

C is defined to be equal to D 𝐶 ≐ 𝐷 Concept definition ≐

a is a C 𝑎: 𝐶 Concept assertion :
a is R-related to b (𝑎, 𝑏): 𝑅 Role assertion :

Table 3: List of search engines with reasoners

Rule Support
Reasoning

Algorithm

Supported Expressivity For

Reasoning

OWL-DL

Entailment
Search Engines

Yes (SWRL-DL

Safe Rules)
Tableau SROIQ(D) Yes PELLET [49]

Yes (SWRL) Rule – Based - Yes JESS [52]

Yes (SWRL-DL

Safe Rules)

Reasoning &

Datalog
SHIQ(D) Yes KAON2 [53]

Yes (SWRL)
First-|Order

Prover
- Yes HOOLET [3]

Yes (SWRL-DL

Safe Rules)
Rule – Based SHN Yes SHER [54]

No Tableau SHIQ Yes FACT [55]

No Tableau SROIQ(D) Yes FACT++ [56]

Yes (SWRL-not

fully support SWRL)
Tableau - Yes RACERPRO [57]

Yes (own Rule

Format)
Rule - Based

Varios Reasoner

(incomplete for nontrivial

description logic)

Yes JENA [58]

Yes (own Rule

Format)
Tableau - Yes F-OWL [59]

Yes (SWRL,

RuleML, Jess)
Rule - Base - No

SWEETRULES

[60]

Yes (own Rule

Format)
Rule - Based R-entailment No OWLIM [61]

Yes (SWRL,

RuleML, Jess)
Rule - Based R-entailment No BASEVISOR [62]

4.0 METHODOLOGY

As mentioned in the previous part, ontology reasoning has significant limitations in its realization; therefore, this

study aims to find a solution to improve it. The main limitation of ontology reasoning is its inability to solve the

realization problem. Until now, various solutions have been used to overcome this inability.

The approach used in this study is to logically separate the realization problem. In other words, instead of choosing

a particular subcategory of ontology, this study finds an answer to the realization problem by dividing it into some

subcategories and then solving these subcategories. In this way, computational cost and inefficiency are avoided

by minimizing the problem. In general, the advantages of this innovation can be summarized as follows:

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

43

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

1. Solving the realization problem in semantic reasoning.

2. Break up the realization problem to subsumption and satisfiability problems.

3. Solving the realization problem in Polynomial time.

4. Reasoning time is improved and the faster response is achieved.

5. Better precision and proficiency vis-a-vis the existing methods

In general, the realization problem can be divided into the following subcategories:

* Satisfiability of the concept: diagnosis of the concept considering the individual's affiliation based on their

description.

* Subsumption of the concept: determining whether d concept d follows c, which means that c is more general

than d.

In contrast, the realization problem can be defined as “"finding a concept considering where an individual has the

most attachment.." To solve either of the above two problems, it is necessary to separate them and integrate their

results.

Based on the definition of DL, each DL-based reasoning system consists of a TBox and an ABox, which we have

already discussed.

Then, having a common TBox and ABox is necessary to solve and integrate the two problems [63]. However,

TBox possibly expands from one problem to another, but it does not harm the totality of the problem. Thus, the

following theorem is considered [63]:

Theorem 1: Assume that T is an acyclic TBox (terminology) and T′ is its expansion. Then:

1. T and T′ have the same name and symbol.

2. T and T′ are equivalent.

3. Both T and T′ are definitorial.

Proof: 𝑇1 is a terminology. Assume 𝐴 ≡ 𝐶 and 𝐵 ≡ 𝐷 are 𝑇1 definitions that B occurs in C. By contrast, assume

C′ is a concept that is resulted from the substitution of each B repetition in C with D and assume that 𝑇2 uses a

terminology that is resulted from the substitution of 𝐴 ≡ 𝐶 with 𝐴 ≡ 𝐶′ in 𝑇1.

Thus, both terminologies have the same name and symbol. Both terminologies have the same model because 𝑇2

resulted from 𝑇1 through a substitution.

Then, satisfiability and subsumption can be solved at the same time by considering the same TBox and ABox for

a domain. The realization problem is formally defined before solving any of these problems. All the following

formal definitions are extracted from [63].

Definition 1 (realization):

Given an ABox of A, Concept C, individual a and a set of concepts, find C as the most specific concepts from the

set such that A ⊨ C(a).

An individual is called a and a collection of concepts are given. Find c (most specific concept) from the collection

of concepts, such that A ⊨ C(a) .

The definition of the most specific concept is as follows:

Definition 2 (most specific concept):

Assume A is an ABox in DL and a is an individual in A. C concept is called the most specific concept for a. Based

on A, MSC(A,a) can be written for each b concept in DL. A ╞ D(a) implies that C ⊆ D.

Clearly, when MSC (A,a) is specified to determine whether a is an example of D concept, it is enough to check

whether MSC(A,a) follows D concept.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

44

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

As mentioned previously, the realization problem involves finding an individual that has the most relevance to a

concept. Then, the difficulty regarding the reasoning of this problem involves finding the most relevance to a

concept, which needs a full investigation of the TBox and ABox structures.

This study aims to solve the realization problem by solving subsumption and satisfiability, which are simple

problems. First, the formal definitions are discussed. Then, the main method is presented.

Definition 3 (satisfiability):

Based on T, C concept is satisfiable if the I model exists in T, such that 𝐶𝐼 is not empty.

Definition 4 (subsumption):

Let T be a TBox (terminology), a concept C is subsumed by a concept D with respect to T if 𝐶𝛪 ⊆ 𝐷𝛪 for every

model 𝛪 of T. In this case, we write 𝐶 ⊑𝑇 𝐷 or𝑇 ⊨ 𝐶 ⊑ 𝐷.

By contrast, in specific conditions, the satisfiability problem may turn into the subsumption problem. Thus,

solving the subsumption-like subcategories to meet the realization satisfaction is enough to solve the realization

problem. Based on [63], satisfiability can be decreased into subsumption. Consider the following theorems:

Theorem 2: For D and C concepts:

C is unsatisfiable if and only if C is subsumed by empty concept ⊥.

Proof: Refer to [63].

Theorem 3: For D and C concepts:

C and D are equivalent if and only if C is subsumed by D and D is subsumed by C.

Proof: Refer to [63].

Based on the two previously presented problems, the realization problem can be solved solely through

subsumption. Thus, for solving realization:

1. Assume A is the collection of concepts in realization and a is the individual.

2. The satisfiability problem for A collection is solved based on a, and the collection of concepts is assumed

to satisfy a in R collection.

3. The subsumption is solved for all possible pairs of R collection, and MSC(R,a) is achieved.

4. According to the fact that satisfiability is reducible to subsumption, at the second level, subsumption is

used to solve the satisfiability problem.

The main challenge is the efficiency of this method for collections with a large number of concepts. In the

following part, an algorithm for reducing and optimizing the primary concept collection is presented. In other

words, a solution to the ontology partitioning problem is derived. After partitioning the ontology into different

sub-ontologies, the procedure for solving the realization problem for one of the sub-ontologies is performed.

In ontology partitioning, ontology O is partitioned into a collection of modules, that are not necessarily disjoint,

such that the union of all modules is equal to O. The partition function is then formally defined as follows:

Definition 5 (ontology partitioning function):

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑂) → 𝑀 = {{𝑀1, 𝑀2, … , 𝑀𝑛}|{𝑀1 ∪ 𝑀2 ∪ … ∪ 𝑀𝑛} = 𝑂}

According to the fact that correlation among concepts is achieved through the ontology structure, an acyclic graph

is used for ontology partitioning.

In this case, graph O = (C,D), where C is the collection of concept and D is the dependency collection of concepts.

Then, this procedure ontology is changed into a multipartite graph, such that the result of the query might exist in

one or some parts of the graph. If the query results exist in one part of the graph, then only that part of the graph

is investigated because of its independence from different parts. Other ontology parts are not checked.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

45

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

The proof of the presented idea is as follows:

Let suppose that, after doing the graph partitioning, the related part of ABox A (with Tbox T) to query q is p.

Then, we solve the satisfiability problem in p:

∃ 𝐼 ∈ 𝑝, 𝐶𝐼 𝑖𝑠 𝑛𝑜𝑡 ⊥ (1)

So, we find all C in p that are satisfiable and put them all in R:

𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}, 𝑅𝑖 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑖𝑛 𝑝 (2)

Then, for all pairs of satisfiable concepts in R, we solve subsumption problem as follows:

∀(𝑖1, 𝑖2) ∈ 𝑅, ∀ 𝐼 ∈ 𝑇 𝐶𝐼 ⊑ 𝐷𝐼 (3)

If i1 is subsumptive to i2, then i1 is removed from R. We apply relation (3) for every pair of i1 and i2 since there

is no candidate i1 and i2 and we name new R as 𝑅′. Then we apply all concepts in 𝑅′ to individual a such that:

∀𝐶 ∈ 𝑅′ 𝑖𝑓 𝐴 ⊭ 𝐶(𝑎) 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝐶 𝑓𝑟𝑜𝑚 𝑅′ (4)

So 𝑅′ has a candidate 𝑚𝑠𝑐(𝐴, 𝑎) such that the real most specific concept A and a is in 𝑅′.

On the other hand, according to theorem 1,2,3 and [63] we can solve satisfiable problem (relation (1)) using only

the subsumption problem. So we find candidate solutions for realization problem in reasonable time and we use

only the subsumption problem.

The general problem solving procedure is the same as it is shown in Figure 1. The pseudo code of the algorithm

is shown in Figure 2.

In line 3 from Fig 2, we used ontology partitioning algorithm based on [64] approach which describes that using

the pseudo code format in Fig 1. After partitioning ontology into parts and selecting a relevant part(s) in the

ontology partitioning phase, the important point is to combine and merge query answers from relevant parts to

produce the final answer.

In other words, we must prove that the final answer can be produced from instance checking through independent

Abox. Before the definition of respective theorem, we should declare some relevant terms [65].

Definition 6: Abox graph

One Abox graph for Abox A, is AG (A) that contains vertex set V, edge set U and the following function:

F: E → { (a, b)| a, b ∈ A} (5)

Each vertex is related to one individual and AG (A) is directed as a multipartite graph.

Definition 7: (Abox dependency)

Two connected Abox A1 and A2 are given such thatA = A1 ∪ A2. If A1, A2 are dependent, Abox graph A is

connected, and If A1, A2 are independent, Abox graph A is disconnected.

So, we can declare the following theorem.

Theorem 4: Independent Abox and Instance checking

Two connected Abox A1 and A2 are given such thatA = A1 ∪ A2. If A1, A2 are independent then for each query

realization, we have Φ and Tbox T:

< T, A >⊨ Φ if and only if < T, A1 > ╞ Φ or < T, A2 > ╞ Φ.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

46

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Fig.1: Overall proposed process

Fig.2: Proposed algorithm for the realization problem

Ontology Partitioning

Select dependent part

Create a dependency graph
Ontology

(OWL)

ABox

TBox

Query

Solve

Realization

problem

Results

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

47

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Fig.3: Overlapped Ontology Partitioning

Proof:

(→)

Suppose that A1 and A2 are independent and ∆A1

I , ∆A2

I are domains of A1 and A2, then:

 ∆A1

I ∩ ∆A2

I = ∅ (6)

For each concept C, CA1

I ∩ CA2

I = ∅ which CAi

I is extended C in ∆Ai

I .

On the other hand, suppose that < T, A1 >⊭ Q and < T, A2 >⊭ Q which means:

∃I1; I1╞A1, I1╞T, I1╞¬Q (7)

 ∃I2; I2╞A2, I2╞T, I2╞¬Q (8)

Which I1 and I2 are explanations of A1 and A2.

Since A = A1 ∪ A2 and ∆1
I ∪ ∆2

I = ∅, we can create the explanation from A like I which 𝐼 = 𝐼1 ∪ 𝐼2. In other words

I =< ΔI, ΟI > that declare as follows:

(i) ∆I= ∆1
I ∪ ∆2

I

(ii) For any constant a, aI = {
aI1 if a occurs in A1

aI2if a occurs in A2

}

)iii) for any concept C,CI = CI1 ∪ CI2

(iv) For any role R, RI = RI1 ∪ RI2

So, we can conclude from I1╞¬Q, I2╞¬Q and (iii):

I╞ ¬Q (9)

Which means:

(¬Q)I = (¬Q)I1 ∪ (¬Q)I2 (10)

That I is an explanation of A. On the other hand we can conclude from (ii), (iii) and (iv) that:

(A)I = (A1)I1 ∪ (A1)I2 (11)

Because A1 and A2 are consistent, we just prove no intersection between them.

For Concept C from DL, we have:

CI ⊆ CI (12)

On the other hand, we have:

(¬C)I = (∆I\∆I) ⊆ ∆I (13)

Then, for C, we have:

CI1 ⊆ ∆1
I and (¬C)I2 ⊆ ∆2

I (14)

Because of ∆1
I ∩ ∆2

I = ∅, then:

CI1 ∩ (¬C)I2 = ∅ (15)

This means they have no intersection. Since, we have the explanation I from A:

Since, we have the explanation I from A:

(A)I ≠ Q and (¬Q)T ≠ Q (16)

Then:

I╞ A∩ I╞ ¬Q (17)

Which is an A⊯Q definition.

Therefore, A╞ Q if A1╞ Q or A2╞ Q that result is <T,A>╞ Q if <T,A1>╞ Q or <T,A2>╞ Q.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

48

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

(←)

We suppose that <T,A1>╞ Q or <T,A2>╞ Q. In both cases we have:

<T,A1 ∪ A2>╞ Q (18)

 Which <T,A >╞ Q.

5.0 ILLUSTRATION THE EXAMPLE

In this section, we describe the proposed algorithm and give an example of identifying the concept that is closest

to the query, i.e., the realization concept.

Step 1:

In this step, the ontology is partitioned, and the presented ontology is divided into separate parts. The solution

to the realization problem is not obtained from the whole ontology but from the partitions associated with

the query.

In this example, we use the automotive production ontology. The following partitions are produced created

after partitioning the ontology.

Step 2:

Suppose the query is as follows:

"When was the car with a 3500 cc engine produced?"

First, the term 3500 cc is searched in the ontology. Then the concept is identified in the sub-ontology of

"car manufacturer B." So, the remaining steps of this algorithm are performed only in this sub-ontology.

Step 3:

The solution to the realization problem in the sub-ontology of car production B is discussed.

Let us assume that the structure is as shown in the following figure.

Step 4:

The satisfiability problem is solved for car production B. Thus, the set of concepts that concludes car

production B or the concepts that satisfy A must be identified.

Therefore, R is obtained as follows:

R = {Iran khodro, products of 2004, ‘206’ and petrol and chassis and motor}

Car production (A) Car production (b) Car production (C)

Fig.4: An excerpt of the Car Manufacturing model indicating (a) Classes, (b) Data Type Properties, (c) Object

Properties and (d) Individual

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

49

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Fig.5: Car Manufacturing Ontology

 Step 5:

 The subsumption problem is implemented as all possible pairs in the R set. See Fig. 6.

 Therefore, the most specific concept has the following elements:

Msc (Iran khodroo, 3500 cc) = (206, products of 2004).

Step 6:

As proven by Theorem 4, the final answer to the query is the sum of this response.

Answer: {206, products of 2004)

Fig.6: Subsumption problem

Motor Chassis with petrol fuel 206 Products of

2004

Chassis is more

general than motor

206 is more general

that petrol

206 is more general

Cannot be reduce to

any member

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

50

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

6.0 RESULT ANALYSIS

The method proposed in [66], which has a standard structure for the evaluation of ontology reasoning is used to

assess the proposed method. The ORE framework presented in [66] is the framework for the OWL reasoner

evaluation. The framework is tuned for UNIX-based operating systems. The ORE framework can be applied to

any given reasoner and set of ontologies. Each reasoner my implement in the specific folder structure to evaluate

with this framework. It supports two components for test and verifies the reasoners. The reasoner presented in this

article are customized with the mentioned specific structure of the ORE framework and the results of the ORE

test output are reported below.

The data set is used in the framework which was produced by the ontology Reasoner Evaluation Workshop in

2014 [67]. The criteria for assessment of the introduced reasoners in this framework are as follows:

1. Realization

2. Classification

3. Consistency

The proposed method is compared with the HermiT [30] and FaCT++[31] reasoners based on the aforementioned

parameters . The JFaCT reasoner is the JAVA implementation of the FaCT++ reasoner, and their differences are

presented in Table 4[67].

Table 4: Comparison between JFaCT and FaCT++

FaCT++ JFaCT Characteristics

EL, RL, QL, DL OWL2 profile supported

OWLAPI, LISP OWLAPI Interfaces

Tableaux Tableaux Algorithms

N/A Same as FaCT++ Optimizations

good general performance Pure Java; extended DT Advantages

OWLAPI interface is

complicated
Work in progress Disadvantages

General purposes Application focus

The results of the comparison between the proposed method and the above reasoners based on three parameters

are shown in Tables 5 to 7.

The scores in the tables indicate the accuracy of the answers given by the reasoner. In other words, a score of 253

out of 264 means that 253 out of 264 questions were answered correctly. The error rate shows how many wrong

answers were given by the reasoner.

The tables clearly show that the proposed method outperforms the other ones in terms of the three parameters.

Table 5: Comparison of different methods based on the Realization parameter

Time(s) Error Score Reasoner Rank

545.68 s 11 253/264 Proposed Reasoner 1

1111.3 s 92 172/264 FaCT++ 2

2934.9 s 101 163/264 HermiT 3

3022.5 s 102 162/264 HermiT-OA4 4

Table 6: Comparison of different methods based on the classification parameter

Time(s) Error Score Reasoner Rank

1318.18 s 14 292/306 Proposed Reasoner 1

5808.2 s 69 237/306 HermiT-OA4 2

5416.4 s 70 236/306 HermiT 3

1361.3 s 106 200/306 FaCT++ 4

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

51

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

Table 7: Comparison of different methods based on the consistency parameter

Time(s) Error Score Reasoner Rank

1501.6 s 6 300/306 Proposed Reasoner 1

1449.6 s 12 294/306 HermiT 2

1549.4 s 13 293/306 HermiT-OA4 3

1341.2 s 30 276/306 FaCT++ 4

Fig.7: Comparison of elapsed average time for reasoners in seconds

7.0 CONCLUSION

This study proposed an efficient method to solve the realization problem based on the satisfiability and

subsumption problems. The computational complexity is the main problem in solving the realization problem.

The proposed method compensated this drawback to a certain extent. The proposed method is implemented in the

form of a standard reasoner and it is compared with other reasoners in a standard framework. The results revealed

an optimized performance compared to previous studies. For conducting future studies, the main challenge is to

overcome the time complexity of the realization problem that needs different methods, such as random

probabilistic, approximate, genetic, and exploratory algorithms.

REFERENCES

[1] C. Elsenbroich, O. Kutz, U. Sattler, A Case for Abductive Reasoning over Ontologies, in: OWLED, (2006).

[2] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of

context modelling and reasoning techniques, Pervasive and Mobile Computing, 6 (2010) 161-180.

[3] I. Horrocks, L. Li, D. Turi, S. Bechhofer, The instance store: DL reasoning with large numbers of

individuals, in: Proc. of the 2004 Description Logic Workshop (DL 2004), (2004), pp. 31-40.

[4] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, HermiT: reasoning with large ontologies, Computing

Laboratory, Oxford University, (2009).

[5] D. Tsarkov, I. Horrocks, FaCT++ description logic reasoner: System description, in: International Joint

Conference on Automated Reasoning, (Springer, 2006), pp. 292-297.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

52

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

[6] Y. Welsch, A. Poetzsch-Heffter, A fully abstract trace-based semantics for reasoning about backward

compatibility of class libraries, Science of Computer Programming, 92 (2014) 129-161.

[7] C.C. Din, E.B. Johnsen, O. Owe, I.C. Yu, A modular reasoning system using uninterpreted predicates for

code reuse, Journal of Logical and Algebraic Methods in Programming, 95 (2018) 82-102.

[8] Bahadorani, B., & Zaeri, A. (2020). A method for using temporal reasoners to answer the history of science

questions. International Journal of Information Technology, 12(1), 181-188.

[9] S. Singh, R. Karwayun, A comparative study of inference engines, in: Information Technology: New

Generations (ITNG), 2010 Seventh International Conference on, (IEEE, 2010), pp. 53-57.

[10] X. Su, L. Ilebrekke, A comparative study of ontology languages and tools, in: International Conference on

Advanced Information Systems Engineering, (Springer, 2002), pp. 761-765.

[11] Sarker, M. K., & Hitzler, P. (2019, July). Efficient concept induction for description logics. In Proceedings

of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 3036-3043).

[12] Carral, D., Dragoste, I., & Krötzsch, M. (2020). Reasoner= logical calculus+ rule engine. KI-Künstliche

Intelligenz, 34(4), 453-463.

[13] Mehri, R., Haarslev, V., & Chinaei, H. (2018). Optimizing heuristics for tableau-based owl reasoners. arXiv

preprint arXiv:1810.06617.

[14] S.D. Ravana, P. Samimi, P. Rajagopal, QUALITY OF CROWDSOURCED RELEVANCE JUDGMENTS

IN ASSOCIATION WITH LOGICAL REASONING ABILITY, Malaysian Journal of Computer Science,

(2018) 73-86.

[15] C. d'Amato, F. Esposito, N. Fanizzi, B. Fazzinga, G. Gottlob, T. Lukasiewicz, Inductive reasoning and

semantic web search, in: Proceedings of the 2010 ACM Symposium on Applied Computing, (ACM, 2010),

pp. 1446-1447.

[16] P. Kapłański, A. Seganti, K. Cieśliński, A. Chrabrowa, I. Ługowska, Automated reasoning based user

interface, Expert Systems with Applications, 71 (2017) 125-137.

[17] F. Lashkari, F. Ensan, E. Bagheri, A.A. Ghorbani, Efficient indexing for semantic search, Expert Systems

with Applications, 73 (2017) 92-114.

[18] R.A. Kadir, R.A. Yauri, A. Azman, SEMANTIC AMBIGUOUS QUERY FORMULATION USING

STATISTICAL LINGUISTICS TECHNIQUE, Malaysian Journal of Computer Science, (2018) 48-56.

[19] Quan, Z., & Haarslev, V. (2019). A framework for parallelizing OWL classification in description logic

reasoners. arXiv preprint arXiv:1906.07749.

[20] O. Pivert, O. Slama, G. Smits, V. Thion, A fuzzy extension of SPARQL for querying gradual RDF data,

in: Research Challenges in Information Science (RCIS), 2016 IEEE Tenth International Conference on,

(IEEE, 2016), pp. 1-2.

[21] S. Vigneshwari, SEFOS: Semantic enriched fuzzy based ontological integration of web data tables, in:

Circuit, Power and Computing Technologies (ICCPCT), 2015 International Conference on, (IEEE, 2015),

pp. 1-4.

[22] M. Joseph, G. Kuper, T. Mossakowski, L. Serafini, Query answering over contextualized RDF/OWL

knowledge with forall-existential bridge rules: decidable finite extension classes, Semantic Web, 7 (2016)

25-61.

[23] P. Ristoski, E.L. Mencía, H. Paulheim, A hybrid multi-strategy recommender system using linked open

data, in: Semantic Web Evaluation Challenge, (Springer, 2014), pp. 150-156.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

53

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

[24] I. Fister, X.-S. Yang, K. Ljubič, D. Fister, J. Brest, I. Fister, Towards the novel reasoning among particles

in PSO by the use of RDF and SPARQL, The Scientific World Journal, 2014 (2014).

[25] D.D. Gessler, E. Sirin, SSWAP: Enabling Transaction-Time Reasoning for Semantic Workflows,

Computer, 48 (2015) 60-68.

[26] A. Lukasová, M. Zácek, English grammatical rules representation by a meta-language based on RDF model

and predicate clausal form, International Information Institute (Tokyo). Information, 19 (2016) 4009.

[27] K. Kaneiwa, R. Mizoguchi, P.H. Nguyen, A Logical and Ontological Framework for Compositional

Concepts of Objects and Properties, New Generation Computing, 33 (2015) 149-172.

[28] T.H.H. Nguyen, N. Le Thanh, Coloured Petri Nets-based Approach for Manipulating RDF Data, Journal

of Automation and Control Engineering (JOACE), 3 (2014) 2301-3702.

[29] T.H.H. Nguyen, N. Le Thanh, An ontology-enabled approach for modelling business processes, in: 10th

IEEE International Conference Beyond Databases, Architectures, and Structures (BDAS 2014), (Springer,

2014).

[30] A. Agostini, C. Bettini, D. Riboni, Online ontological reasoning for context-aware internet services, (2006).

[31] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL: A semantic web rule

language combining OWL and RuleML, W3C Member submission, 21 (2004) 79.

[32] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, BUNDLE: A reasoner for probabilistic ontologies, in:

International Conference on Web Reasoning and Rule Systems, (Springer, 2013), pp. 183-197.

[33] F. Baader, C. Lutz, B. Suntisrivaraporn, CEL—a polynomial-time reasoner for life science ontologies, in:

International Joint Conference on Automated Reasoning, (Springer, 2006), pp. 287-291.

[34] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, G. Xiao, Query Rewriting for Horn-SHIQ Plus Rules, in: AAAI,

(2012).

[35] M. del Mar Roldan-Garcia, J.F. Aldana-Montes, DBOWL: Towards a Scalable and Persistent OWL

reasoner, in: Internet and Web Applications and Services, 2008. ICIW'08. Third International Conference

on, (IEEE, 2008), pp. 174-179.

[36] F. Bobillo, M. Delgado, J. Gómez-Romero, Reasoning in fuzzy OWL 2 with DeLorean, in: Uncertainty

Reasoning for the Semantic Web II, (Springer, 2013), pp. 119-138.

[37] J. Baker, The DRAGON system--An overview, IEEE Transactions on Acoustics, Speech, and Signal

Processing, 23 (1975) 24-29.

[38] A. Corbel, J.-J. Girardot, P. Jaillon, Drew: A dialogical reasoning web tool, in: Int. conf. on ict's in

education, (2002).

[39] J. Mendez, jcel: A Modular Rule-based Reasoner, in: ORE, (2012).

[40] A. Steigmiller, T. Liebig, B. Glimm, Konclude: system description, Web Semantics: Science, Services and

Agents on the World Wide Web, 27 (2014) 78-85.

[41] D. Tsatsou, S. Dasiopoulou, I. Kompatsiaris, V. Mezaris, LiFR: A lightweight fuzzy DL reasoner, in:

European Semantic Web Conference, (Springer, 2014), pp. 263-267.

[42] A.A. Romero, B.C. Grau, I. Horrocks, MORe: Modular combination of OWL reasoners for ontology

classification, in: International Semantic Web Conference, (Springer, 2012), pp. 1-16.

[43] I. Horrocks, U. Sattler, Ontology reasoning in the SHOQ (D) description logic, in: IJCAI, (2001), pp. 199-

204.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

54

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

[44] Y. Kazakov, M. Krötzsch, F. Simancik, ELK Reasoner: Architecture and Evaluation, in: ORE, (2012).

[45] F. Bobillo, U. Straccia, fuzzyDL: An expressive fuzzy description logic reasoner, in: FUZZ-IEEE, (2008),

pp. 923-930.

[46] R. Mutharaju, P. Hitzler, P. Mateti, DistEL: A distributed EL+ ontology classifier, in: Proceedings of the

9th International Conference on Scalable Semantic Web Knowledge Base Systems-Volume 1046, (CEUR-

WS. org, 2013), pp. 17-32.

[47] D. Tsarkov, I. Palmisano, Chainsaw: a Metareasoner for Large Ontologies, in: ORE, (2012).

[48] C.J. Matheus, K. Baclawski, M.M. Kokar, Basevisor: A triples-based inference engine outfitted to process

ruleml and r-entailment rules, in: 2006 Second International Conference on Rules and Rule Markup

Languages for the Semantic Web (RuleML'06), (IEEE, 2006), pp. 67-74.

[49] B. Parsia, E. Sirin, Pellet: An owl dl reasoner, in: Third International Semantic Web Conference-Poster,

(2004).

[50] K. Wu, V. Haarslev, Parallel owl reasoning: Merge classification, in: Joint International Semantic

Technology Conference, (Springer, 2013), pp. 211-227.

[51] B. Sertkaya, The ELepHant Reasoner System Description, in: ORE, (2013), pp. 87-93.

[52] E. Friedman-Hill, Jess, the rule engine for the java platform, in, (2008).

[53] F. Bobillo, U. Straccia, Finite fuzzy description logics and crisp representations, in: Uncertainty Reasoning

for the Semantic Web II, (Springer, 2010), pp. 99-118.

[54] J. Dolby, A. Fokoue, A. Kalyanpur, E. Schonberg, K. Srinivas, Scalable highly expressive reasoner

(SHER), Web Semantics: Science, Services and Agents on the World Wide Web, 7 (2009) 357-361.

[55] I. Horrocks, FaCT and iFaCT, Description logics, 22 (1999).

[56] D. Tsarkov, I. Horrocks, FaCT++ description logic reasoner: System description, in: Automated reasoning,

(Springer, 2006), pp. 292-297.

[57] V. Haarslev, K. Hidde, R. Möller, M. Wessel, The RacerPro knowledge representation and reasoning

system, Semantic Web, 3 (2012) 267-277.

[58] A. Jena, Reasoners and rule engines: Jena inference support, The Apache Software Foundation, (2013).

[59] Y. Zou, T. Finin, H. Chen, F-owl: An inference engine for semantic web, in: Formal Approaches to Agent-

Based Systems, (Springer, 2005), pp. 238-248.

[60] J. Zhao, H. Boley, Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension,

in: URSW, (2008).

[61] A. Kiryakov, OWLIM: balancing between scalable repository and light-weight reasoner, Proc. of

WWW2006, Edinburgh, Scotland, (2006).

[62] C.J. Matheus, K. Baclawski, M.M. Kokar, Basevisor: A triples-based inference engine outfitted to process

ruleml and r-entailment rules, in: Rules and Rule Markup Languages for the Semantic Web, Second

International Conference on, (IEEE, 2006), pp. 67-74.

[63] F. Baader, The description logic handbook: Theory, implementation and applications, (Cambridge

university press, 2003).

[64] K. Etminani, A.R. Delui, M. Naghibzadeh, Overlapped ontology partitioning based on semantic similarity

measures, in: 2010 5th International Symposium on Telecommunications, (2010), pp. 1013-1018.

A Method for Improving Reasoning and Realization Problem Solving in Descriptive Logic- Based

and Ontology-Based Reasoners, pp., 37-55

55

Malaysian Journal of Computer Science, Vol. 35 (1), 2022

[65] P. Pothipruk, G. Governatori, A formal ontology reasoning with individual optimization: a realization of

the semantic web, in: International Conference on Web Information Systems Engineering, (Springer,

2005), pp. 119-132.

[66] R.S. Gonçalves, S. Bail, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, B. Glimm, Y. Kazakov, OWL

Reasoner Evaluation (ORE) Workshop 2013 Results: Short Report, in: ORE, (2013), pp. 1-18.

[67] N.a.P. Matentzoglu, Bijan, ORE 2014 Reasoner Competition Dataset, (2014).

