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ABSTRACT 

 

Recent studies in scientific paper summarization have explored a new form of structured summary for a reference 

paper by grouping all cited and citing sentences together by facet. This involves three main tasks: (1) identifying 

cited text spans for citances (i.e., citing sentences), (2) classifying their discourse facets, and (3) generating a 

structured summary from the cited text spans and citances. This paper focuses on the first task, and approaches the 

task as binary classification to distinguish relevant pairs of citances and reference sentences from irrelevant pairs. 

We propose a new method that integrates feature selection and classification techniques to enhance classification 

performance. The proposed method investigates combinations of six feature selection methods (χ2-Statistics, 

Information Gain, Gain Ratio, Relief-F, Significance Attribute Evaluation, and Symmetrical Uncertainty), and five 

classification algorithms (k-Nearest Neighbors, Decision Tree, Support Vector Machine, Naïve Bayes, and Random 

Forest). Additionally, to address imbalanced data during training, we apply SMOTE (Synthetic Minority Over-

sampling Technique) to introduce synthetic biases towards the minority. Experiments are conducted using the CL-

SciSumm corpora to compare the effect of feature selection applied to classification. The results reveal the benefits 

of feature selection in significantly boosting performance of F1 score metric, and show that our method is 

competitive to the state-of-the-art methods in the CL-SciSumm evaluations. 

 

Keywords: Citation analysis, cited text spans identification, feature selection, classification, class imbalance, 

performance evaluation, scientific paper summarization 

 

 

1.0 INTRODUCTION 

 

Manual summarization of scientific literature requires considerable time and effort, and the rate at which new 

scientific papers are published makes it difficult to keep up. Thus, there has been extensive investigation into 

automatic summarization of scientific papers. Scientific paper summarization is one of the most challenging 

applications of automatic text summarization. Such summarization systems need to produce a concise, informative, 

and fluent summary conveying the key information from the paper(s), and must also synthesize the summary for 

certain argumentative purposes [21]. 
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Numerous approaches have been developed to automate the synthesis and updating of automatic summaries of 

scientific papers, e.g., [1], [12], [15], [19], [21], [38], [45], [46], [51]. Recently, the interest in scientific paper 

summarization has focused on citation-based summarization, which uses citations1 to a paper to form its summary 

[1], [38]. This type of summary is called the citation summary of a paper, and comprises a set of citation sentences2 

(i.e., citances [40]) where the paper is cited. This form of summarization offers a view of the cited paper with 

information deemed to be important by peers, and can be seen as a community-created summary of that paper [15], 

[47]. However, as articulated by [22], a citation summary does not consider the context of the target user, verify the 

claim of the citation, or provide context from the reference paper. 

 

To strike a balance between context and community insight, a new promising direction has emerged: the creation of 

a citance-focused faceted summary that groups all cited and citing sentences by facet (e.g., the goal of the paper, 

methods, results obtained, and conclusions) [22]. As shown in Fig. 1, this involves three main tasks: (1A) 

identifying cited text spans for citances, (1B) classifying their discourse facets, and (2) generating a structured 

summary from the cited text spans and citances. 

 

Given: A topic consisting of a reference paper (RP) and a set of citing papers (CPs) that all contain 

citations to the RP. In each CP, the text spans (i.e., citances) have been identified that pertain to a 

particular citation to the RP. 

Task 1A: For each citance, identify the spans of text (cited text spans) in the RP that most accurately 

reflect the citance. These are of the granularity of a sentence fragment, a full sentence, or several 

consecutive sentences. 

Task 1B: For each cited text span, identify what discourse facet of the paper it belongs to, from a 

predefined set of facets. Discourse facets describe the type of information in the cited text span. 

Task 2: Finally, generate a structured summary of the RP from the cited text spans of the RP and all of 

the community discussion represented in the citances. 

Fig. 1: The three main tasks for creating a citance-focused faceted summary of a paper [22] 

 

This work deals with Task 1A. It builds on our prior effort [53], but more specifically focuses on investigating the 

use of feature selection techniques to enhance classification performance in the context of identifying cited text 

spans for citances. We propose a new method that integrates feature selection and classification (see Fig. 2). The 

feature selection techniques investigated are filter-based, and are independent of the classifiers used. A preferred 

sequence of features is built according to their individual predictive power, and a reduced feature set is computed by 

removing features of low predictive power. We consider six feature-goodness criteria: χ2 (Chi-Squared)-Statistics, 

Information Gain, Gain Ratio, Relief-F, Significance Attribute Evaluation, and Symmetrical Uncertainty. As for 

classification, we use five notable algorithms: k-Nearest Neighbors, Decision Tree, Support Vector Machine (SVM), 

Naïve Bayes, and Random Forest. Additionally, we employ an over-sampling approach, SMOTE (Synthetic 

Minority Over-sampling Technique) [11], to tackle the class imbalance problem during training. The primary goal 

of this study is the evaluation and comparison of classification results after applying feature selection to 

classification results from the original problem. 

 

The main contributions of this paper are summarized below: 

1. By extending the classification-based method in [53], we propose a new method for Task 1A that further 

enhances classification performance by feature selection. The proposed method investigates multiple feature 

selection techniques to identify a subset of features that can accurately represent the data, and explores 

combinations of feature selection and classification to produce the best results. 

2. By integrating data sampling techniques (e.g., SMOTE [11] in this study) into the pipeline of the proposed 

method, the effect caused by class imbalance during training can be mitigated. 

3. The proposed method is evaluated in a case study using the CL-SciSumm corpora. Experimental results 

reveal the benefits of feature selection in boosting performance of F1 score metric. 

4. A comparison is conducted to understand the influences of variables (e.g., type of classifier, type of feature 

selection method, and number of selected features) that can affect the performance. Empirical analysis on the 

 

1 Different citations to the same paper often focus on distinct aspects of that paper [15]. Hence, the literature has 

taken advantage of citations to understand the main findings and contributions of a paper and how that paper 

affects other papers. 
2 We use the terms citing sentences and citation sentences interchangeably. 



Feature Selection and Classification Integrated Method for Identifying Cited Text Spans  

for Citances on Imbalanced Data, pp., 355-373 

 

357 

Malaysian Journal of Computer Science, Vol. 34 (4), 2021 

relations between feature selection methods is also performed, and a breakdown by category of the most 

prominent features is provided. 

 

The rest of this paper is organized as follows: Section 2.0 briefly reviews related work, Section 3.0 details the 

proposed method, Section 4.0 presents and discusses the evaluation results, and Section 5.0 concludes and suggests 

future research directions. 

 

2.0 RELATED WORK 

 

Previous work identifies the best-matching cited text spans for citances, assuming that a citance and the cited text 

spans to which it refers share similarity of meaning. 3  We roughly categorize methods in the literature into 

information retrieval (IR)-based, classification-based, learning to rank (L2R)-based, and hybrid methods. 

 

IR-based methods: [36] extracted a subset of reference sentences that are with the same facet as the citance. Then, a 

bi-directional similarity was applied combining word-to-word similarity and word specificity to identify from the 

subset the most similar sentence to the citance. [16] created an index that holds all the different spans of text of the 

reference paper and transformed each citance into a query. Each query was subsequently used to retrieve the most 

relevant spans of text, depending on term frequency-inverse document frequency (TF-IDF) similarity and BM25. [8] 

utilized word embeddings based similarity to identify relevant sentences from reference papers. They also studied 

several variations, including rank optimization, normalized embeddings, and average embeddings over a window. 

 

Classification-based methods: [2] compared methods of word classification, sequence labelling, and segment 

classification, and found that segment classification performed best. [53] used binary classification to distinguish 

relevant pairs of citances and reference sentences from irrelevant pairs. They compared several classification 

algorithms, including k-nearest neighbors, decision tree, logistic regression, support vector machine (SVM), naïve 

Bayes, random forest, and ensembles of individual classifiers. They also explored a wide spectrum of citation-

dependent and citation-independent features. [35] applied various classifiers (SVM, decision tree, logistic 

regression, and nearest neighbors), and combined their results by voting. They used similarity-based, rule-based, and 

position-based features. 

 

Some studies try both IR-based and classification-based methods, but do not treat them in combination. [39] 

investigated TF-IDF similarity with multiple incremental modifications and SVMs with a tree kernel. [54] 

developed a search-based method that considers TF-IDF similarity at sentence- and character-level and word2vec 

similarity. Besides, they examined a logistic regression classifier. 

 

L2R-based methods: [10] cast the task as a ranking problem by Ranking SVM. A reference paper was dismantled 

into n-sentence chunks, and the top n-sentence chunks relevant to each citance was extracted. [29] trained an L2R 

model with features indicating lexical overlap and semantic similarity between sentences. The top-ranked reference 

sentence and its adjacent sentences (if they also appeared high in the ranking) were chosen. 

 

Hybrid methods: [26] developed three methods based on TextSentenceRank. The first applied a modified 

TextSentenceRank to incorporate the similarity of reference sentences to the citance on textual level. The second 

employed random forest to select from the candidates extracted by the original TextSentenceRank. The third used 

random forest to identify the relevant sub-parts of the reference paper, and applied the original TextSentenceRank to 

each sub-part to extract cited text spans. [41] scored each reference sentence using a hybrid model that considers 

TF-IDF similarity and the similarity predicted by a single-layer neural network. Sentences were selected via 

diversity-based re-ranking. [42] utilized an artificial neural network (ANN) as filtering to find candidate reference 

sentences. To determine the cited text, TF similarity between candidate sentences and the citance was measured. 

[43] proposed a joint scoring method that weights surface-level closeness and semantic relation. The surface-level 

closeness incorporated TF-IDF similarity and the longest common subsequence score, and the semantic relation was 

learned from a pairwise neural network ranking model. [31] explored different combination strategies (e.g., voting, 

Jaccard focused, and Jaccard cascade) on the basis of various feature rules of different lexicons and similarities, and 

also tested SVM. [32] extended [31] and employed additional features based on the deep semantic information 

obtained by WordNet and a convolutional neural network (CNN). Based on [32], [30] adopted word mover‘s 

distance (WMD) and improved latent Dirichlet allocation (LDA) model to calculate sentence similarity. [24] ranked 

 

3 This assumption follows the findings of [15] that co-citation implies textual similarity. 
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reference sentences by structural correspondence learning, positional language models, and textual entailment 

techniques. Further, they attempted three method combinations: (1) a linear combination of the methods, (2) the use 

of one method as a “filter” for another, and (3) the use of L2R algorithms which are fed the scores of individual 

methods. [4] introduced a voting system that leverages the best results from word embeddings distance, modified 

Jaccard, and BabelNet embeddings distance. Following [4], [3] designed a voting scheme based on supervised 

(convolutional neural network) and unsupervised techniques using word embeddings representations and features 

computed from linguistic and semantic analysis of the documents. [52] used random forest with multiple features. 

They integrated random forest with BM25 and VSM (vector space model) model, and applied a voting strategy to 

select the most related text spans. In addition, they integrated language models with embeddings into the voting 

system to improve performance. [14] extracted candidate cited text spans using handcrafted patterns, and applied k-

nearest neighbors with lexical and syntactic features (cosine similarity, LDA score, and WMD score) to group 

similar sentences in one cluster. Top scored sentences were selected according to their Jaccard and TF-IDF 

similarities. 

 

2.1 Comparison Between This Work and Previous Work 

 

This work approaches the task of identifying cited text spans for citances as binary classification, and thus is 

essentially similar to previous classification-based studies. The main difference from earlier studies is that this work 

more specifically focuses on investigating the application of feature selection techniques to identify a subset of 

features that can accurately represent the data, reduce the complexity of the feature space, and enhance classification 

performance. This work also brings forth new ideas of integrating data sampling techniques into the pipeline of the 

proposed method to tackle the class imbalance problem during training. Finally, this study, as far as we know, is the 

first systematic evaluation on investigating and comparing the feasibility and performance of various combinations 

of feature selection strategies and classification methods. 

 

3.0 PROPOSED METHOD 

 

Fig. 2 illustrates the proposed method, which integrates feature selection and classification to enhance classification 

performance and uses data sampling to address imbalanced data during training. The process consists of two phases: 

training and prediction, which we detail as follows. 

 

 

Fig. 2: Overview of the proposed method 

 

Training phase. Recall that in Fig. 1 the given topic consists of a reference paper (RP) and a set of citing papers 

(CPs) that all contain citations to the RP, and in each CP, the text spans (i.e., citances) have been identified that 

pertain to a particular citation to the RP. We break down the given topic into pairs of citances and reference 
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sentences as the training data. Formally, the training data is a set of pairs {((c, r), y)}, where c is a citance pertaining 

to a reference paper RP, r is a reference sentence of RP, and y  {citation, non-citation}. (c, r) is a citation instance 

if y is labelled as “citation” (i.e., r is the cited reference sentence of c), and is a non-citation instance if y is labelled 

as “non-citation” (i.e., r is not the cited reference sentence of c). Note that the training data is class imbalanced since 

the number of citation instances is far less than the number of non-citation instances (see Section 4.1). Each (c, r) is 

modelled via feature extraction and feature selection. Feature extraction transforms the data into numerical values 

of ad hoc features. Feature selection selects relevant (or discriminatory) features to accurately represent the data in 

the reduced feature space. With the reduced feature set F comprising an |F|-dimensional vector space, (c, r) is 

represented as a feature vector, i.e., (c, r) = <x1, x2, …, x|F|>, where i is a feature extraction function and i(c, r) = xi 

w.r.t. feature fi.4 To balance the training data, SMOTE over-sampling applies SMOTE (Synthetic Minority Over-

sampling Technique) [11] to introduce biases towards the minority. It creates synthetic minority class instances (i.e., 

citation instances) by forming convex combinations of neighboring instances. The input to classifier learning uses 

training instances, and their feature vectors and citation labels. The output is a binary classification model, CM, and 

ideally CM(c, r) = y for all training instances. The learning step trains a predictive model in order to optimize for 

some specific performance metrics (e.g., classification accuracy, error rate) with the observed data. 

 

Prediction phase. Given an unseen instance (c, r) in feature vector using the same feature subset, CM decides its 

proper citation label. The reference sentences classified as cited reference sentences of c compose the candidate 

output. Selection further chooses candidates with high relatedness to c as the final output. For evaluation, 

performance metrics are calculated by comparing the match between the output and the gold standard. 

 

3.1 Feature Extraction 

 

Following [53], we consider five families of features: lexical, knowledge-based, corpus-based, syntactic, and 

surface features. Table 1 lists all the features. The first four families are citation-dependent, and the last is citation-

independent. While citation-dependent features evaluate the citation relation between c and r using text similarity 

measures, citation-independent features focus only on assessing the significance of r. 

 

Table 1: List of features used in this study (excerpted from [53]) 

Feature family Feature name 

Lexical Word overlap; TF-IDF measure; Identity measure; ROUGE score; Named entity 

overlap; Number overlap; Discriminative degree of citation-related word pairs 

Knowledge-based WordNet-based semantic similarity; ADW semantic similarity; WordNet-based 

lexical overlap 

Corpus-based LSA-based semantic similarity; LSA-based lexical overlap 

Syntactic Dependency overlap; Lexico-syntactic subsumption; Word order similarity 

Surface Sentence length; Sentence position; Similarity with title; Similarity with first-

sentence; Similarity with context; Similarity with centroid; TextRank centrality; 

Num. of named entities; Num. of numbers; Discriminative degree of citation-

related words 

 

To measure the relatedness between c and r, lexical features use words shared by them and word occurrence 

statistics, knowledge-based features consider linguistic knowledge derived from WordNet [37], corpus-based 

features apply corpus statistics to derive semantic relations between words, and syntactic features compare their 

syntactic structures obtained by deep linguistic analysis. Surface features are mainly borrowed from text 

summarization to measure the significance of r in the RP. Please refer to [53] for the technical details of feature 

extraction. 

 

Our implementation extracts a total of 343 features in consideration of various factors, e.g., the granularity of units, 

the forms of words (e.g., single words, n-grams, composite words, and lemmas), the use of parts-of-speech, the 

removal of stopwords, the term-weighting schemes, the use of the context of r, and the parameter settings in feature 

extraction. 

 

 

4 Given citance c, the xi are normalized by min-max normalization over all reference sentences. 
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3.2 Feature Selection 

 

Feature selection determines a subset of features useful for building a good predictor. Techniques of feature 

selection can be divided into filter, wrapper, and embedded methods [17]. This study adopts a filter method – 

feature ranking – due to its simplicity, scalability, and good empirical success. Using a feature-goodness criterion, 

the method defines a preferred sequence of features, where a feature with high goodness is potentially more relevant 

to the problem. For classification, the criterion is usually measured by the dependence of individual features to the 

target class. For feature elimination, a subset of features is constructed by removing low-scored features 

experimentally or according to a threshold. 

 

We consider six feature-goodness criteria: χ2 (Chi-Squared)-Statistics [34], Information Gain [20], Gain Ratio [48], 

Relief-F [27], Significance Attribute Evaluation [6], and Symmetrical Uncertainty [44]. 

 

⚫ χ2 (Chi-Squared)-Statistics (CHI) [34] 

 

CHI evaluates each feature according to its value of the chi-squared statistic in relation to the classes. For feature f, 

suppose k is the number of classes; Aij is the number of instances in the i-th interval5, j-th class; Ri is the number of 

instances in the i-th interval, 
1

k

i ijj
R A

=
= ; Cj is the number of instances in the j-th class, 

2

1j iji
C A

=
= ; N is the 

total number of instances, 
2

1 ii
N R

=
= ; and Eij is the expected frequency of Aij, 

i j

ij

R C
E

N


= . The χ2 value of 

feature f is calculated by 

22

1 1

( )
( )

k
ij ij

i j ij

A E
CHI f

E= =

−
=

. 

(1) 

In practice, a feature of an χ2 value less than 3.841 is eliminated for p = 0.05 with 1 degree of freedom. 

 

⚫ Information Gain (IG) [20] 

 

IG measures the amount of information obtained for class prediction in bits that the presence or absence of a feature 

gives about the classes. It estimates the reduction in entropy between the prior entropy of classes {C} and the 

posterior entropy, given values {V} for feature f: 

2 2( ) ( ) log ( ) ( ) ( | ) log ( | )
C V C

IG f P C P C P V P C V P C V
 

= − − − 
 

   , 
(2) 

where P(C) is the prior probability of class C, P(V) is the prior probability that an instance has value V for feature f, 

and P(C|V) is the conditional probability that instances with value V for feature f belong to class C. 

 

⚫ Gain Ratio (GR) [48] 

 

As an adaptation of IG, GR compensates for the information gain’s bias in favor of features with more values, and 

introduces a split information value to normalize IG. The split information indicates the potential information 

generated by splitting the training data into partitions, corresponding to values {V} of feature f, and is calculated as 

−=
V

VPVPfSI )(log)()( 2 , (3) 

where P(V) is the prior probability that an instance has value V for feature f. The gain ratio of feature f is the ratio of 

the information to the split information: 

)(

)(
)(

fSI

fIG
fGR = . 

(4) 

 

5 The range of a numeric feature needs to be discretized into intervals, using, e.g., the entropy-based discretization 

method [34]. In most cases, there are only two intervals for a feature. 
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Here, )( fIG , as shown in Eq. (2), is the information gain for feature f. 

 

⚫ Relief-F (RE) [27] 

 

Relief [25] estimates the quality of features according to how well their values distinguish between the instances of 

the same and different classes that are near each other. Relief is applicable only to two-class problems and cannot 

handle incomplete data. Its variation, Relief-F [27], can deal with multiclass problems, is more robust, and can 

tackle incomplete and noisy data. Fig. 3 illustrates the Relief-F algorithm, which iterates m times. In each cycle, for 

a randomly selected training instance R (selected without replacement), the algorithm finds the k nearest neighbors 

from the same class (i.e., nearest hits; denoted H = {H1, H2, …, Hk}) and the k nearest neighbors from each of the 

different classes (i.e., nearest misses; denoted M(C) = {M1(C), M2(C), …, Mk(C)} for class C). It subsequently 

updates the quality estimation W for all the features based on the average of the contribution of all the hits and all 

the misses.6 For feature f, RE(f) equals W[f] when the process ends. 

 

Algorithm Relief-F 

 

Input: for each training instance, a vector of feature values and its class 

Output: the vector W of estimations of the quality of features 

 

1. set initial weight for each feature f, W[f] = 0.0 

2.     for i = 1 to m do begin 

3.         randomly select an instance R 

4.         find the k nearest hits H 

5.         for each class C ≠ class(R) do 

6.             from class C find the k nearest misses M(C) 

7.         for each feature f do 

8.             W[f] = W[f] – 
1

diff ( , , )k
j

j

f R H

m k= 
  + 

( ) 1

diff ( , , ( ))( )

1 ( ( ))

k
j

C class R j

f R M CP C

P class R m k =

 
  −  

   

9.     end 

Fig. 3: Pseudocode for the Relief-F algorithm [27]. diff(f, I1, I2) calculates the difference between the values of 

feature f for two instances I1 and I2, P(C) is the prior probability of class C, 1–P(class(R)) is the sum of probabilities 

for the misses’ classes, and m is a user-defined parameter (m  number of training instances). Note that diff is used 

also to measure the distance between instances to find the nearest neighbors, and the total distance is simply the sum 

of differences over all features 

 

⚫ Significance Attribute Evaluation (SAE) [6] 

 

SAE assigns a conditional probability based significance to every feature, determined by its separability and 

capability, to distinguish instances of distinct classes. The significance of a feature is defined as a two-way function 

of its association to the class decision. Suppose the feature-to-class association of feature f is a function of the mean 

of the discriminating powers of all possible values of f: 

1

1

1
( ) 1.0

m
i

i

f
m

 
=

 
= − 
 
 , 

(5) 

where m is the number of distinct feature values for feature f, and 
i  is the discriminating power of a feature value. 

Further, assume the class-to-feature association for feature f is computed as the mean of the separability of its 

values: 

2

1

1
( ) 1.0

k
j

j

f
k

 
=

  
=  −       

 , 
(6) 

 

6 The contribution for each class of the misses is weighted by the prior probability of that class and divided by the 

factor 1 – P(class(R)) [27]. 



Feature Selection and Classification Integrated Method for Identifying Cited Text Spans  

for Citances on Imbalanced Data, pp., 355-373 

 

362 

Malaysian Journal of Computer Science, Vol. 34 (4), 2021 

where j  is the separability of the feature values of feature f with respect to class j, and k is the number of different 

classes. The significance of feature f is designated as 1 2( ) ( )
( )

2

f f
SAE f

 +
= , i.e., the average of its feature-to-

class and class-to-feature association values. 

 
⚫ Symmetrical Uncertainty (SU) [44] 

 

SU estimates the feature-to-class correlation. In terms of classes {C} and values {V} of feature f, the symmetrical 

uncertainty of feature f is given by 

2 ( )
( )

( ) ( )

IG f
SU f

H C H V


=

+
 where 2( ) ( ) log ( )

X

H X P X P X= − . 
(7) 

In the equation, )( fIG  is the information gain for feature f (see Eq. (2)), P(C) is the prior probability of class C, and 

P(V) is the prior probability that an instance has value V for feature f. 

 

3.3 SMOTE Over-sampling 

 

Constructing predictive models using imbalanced data tends to ignore the minority class of high interest, and will 

highly favor the majority class (i.e., the class typically carrying lower cost of misclassification) in order to maximize 

overall accuracy. As noted in [50], two techniques can be adopted to address imbalanced data: cost-sensitive 

learning and data sampling. For the latter, over-sampling and under-sampling are the two most common re-sampling 

techniques, both forcing the learner to focus more on correctly classifying instances of the minority class by altering 

the class distribution of the training data. 

 

We employ an over-sampling approach, SMOTE (Synthetic Minority Over-sampling Technique) [11], to mitigate 

the effect caused by class imbalance during training. SMOTE creates synthetic minority class instances to introduce 

more coverage of the minority class, thus allowing a classification algorithm to carve broader decision regions. As 

described in [11], SMOTE over-samples the minority class by taking each minority class sample and introducing 

synthetic examples along the line segments joining any/all of the k minority class nearest neighbors. Depending 

upon the amount of over-sampling required, neighbors from the k nearest neighbors are randomly chosen. In the 

implementation, we generate synthetic citation instances until the number of instances of citation and non-citation 

classes is balanced. 

 

3.4 Classifier Learning 

 

The use of classification algorithms includes k-Nearest Neighbors [5], Decision Tree [49], Support Vector Machine 

[13], Naïve Bayes [23], and Random Forest [9]. 

 

k-Nearest Neighbors (k-NN) [5] is an instance-based classifier that classifies an unseen instance by majority voting 

of its k nearest training instances. 

 

Decision Tree [49] creates a tree-like classification model by iteratively identifying the most significant attribute 

(i.e., feature in this study), that splits the data into homogeneous sets. In a decision tree, a leaf denotes a class label, 

an internal node is a test on an attribute, and a branch is the test outcome. This study applies C4.5 [49], which adopts 

the normalized information gain as the splitting criterion. 

 

Support Vector Machine (SVM) [13] constructs a hyperplane (or set of hyperplanes) of the maximum margin that 

separates data of distinct classes. The basic form of SVMs learns a linear classifier. By the kernel trick, the 

algorithm can learn polynomial classifiers, radial basic function networks, and three-layer sigmoid neural nets. This 

study tests linear SVM for its faster training and competitive accuracy, and adopts L2-regularized L2-loss linear 

SVM (referred to as L2-SVM in the literature) in implementation. 

 

Naïve Bayes [23] builds a classifier based on Bayes’ theorem with the assumption that features are conditionally 

independent given the class. To classify an unseen instance, a Naïve Bayes classifier uses Bayes’ rule to compute 

the probability of each class, given the vectors of observed values for predictive features. It then predicts the most 

probable class using Maximum a Posteriori (MAP). 

 

Random Forest [9] is an ensemble method that generates a forest of uncorrelated decision trees and makes a 
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prediction by the most votes across all the trees. Each tree is grown from a sub-sample drawn with replacement from 

the training data. At each split, the best split on a random subset of features is used to split a node, and each tree is 

grown to the largest extent possible (i.e., there is no pruning). 

 

3.5 Selection 

 

To decrease the number of false positives (i.e., those classified as cited reference sentences, but truly non-cited) in 

the output, we apply our previously developed selection strategy [53]. For citance c, the reference sentences 

classified as its cited reference sentences compose the candidate output. The final output is made up of the 

candidates of relatedness to c greater than a predefined threshold . The relatedness is currently scored by the TF-

IDF similarity between a citance and a reference sentence. 

 

4.0 EVALUATION 

 

4.1 Data 

 

For experiments, we use the CL-SciSumm 2016 and 2017 corpora. Each corpus has two datasets: one for training 

and one for testing. Note that the CL-SciSumm 2016 corpus has an additional development dataset. Each dataset 

contains 10-30 topics, and each topic consists of a research paper, its citing papers, and three types of summaries. In 

each topic, citances are identified by human annotators. Each citance is mapped to its cited text spans and annotated 

with the information facet(s) it stands for. Fig. 4 shows a citation annotation example where Citation Offset indicates 

the citing sentences (ids: 1 and 2) in the citing article (id: W13-4011), Reference Offset indicates the cited sentences 

(ids: 155 and 156) in the reference article (id: J00-3003), and Discourse Facet denotes the facet of the citation. In 

the test dataset, the fields of Reference Offset and Discourse Facet are not provided and need to be respectively 

identified in Task 1A and Task 1B. 

 

Citance Number: 5 | Reference Article: J00-3003.xml | Citing Article: W13-4011.xml | Citation 

Marker Offset: ['1'] | Citation Marker: Stolcke et al., 2000 | Citation Offset: ['1','2'] | Citation Text: <S 

sid="1" ssid="1">Conversational feedback is mostly performed through short utterances such as yeah, 

mh, okaynot produced by the main speaker but by one of the other participants of a 

conversation.</S><S sid="2" ssid="2">Such utterances are among the most frequent in conversational 

data (Stolcke et al., 2000).</S> | Reference Offset: ['155', '156'] | Reference Text: <S sid="155" 

ssid="75">A backchannel is a short utterance that plays discourse-structuring roles, e.g., indicating that 

the speaker should go on talking.</S><S sid="156" ssid="76">These are usually referred to in the 

conversation analysis literature as &quot;continuers&quot; and have been studied extensively 

(Jefferson 1984; Schegloff 1982; Yngve 1970).</S> | Discourse Facet: Method_Citation | Annotator: 

Muthu Kumar Chandrasekaran, NUS | 

Fig. 4: A citation annotation example 

 

Each dataset is transformed into pairs of citances and reference sentences. Table 2 and Table 3 present, respectively, 

the statistics of the CL-SciSumm 2016 and 2017 corpora. It is observed that the datasets are imbalanced. For 

example, the training dataset of the CL-SciSumm 2016 corpus has 27,235 non-citation instances compared with 249 

citation instances. 

 

Table 2: Statistics of the CL-SciSumm 2016 corpus 

Statistics Training Development Test 

Num. of topics 10 10 10 

Avg. num. of sentences in a reference paper 218.3 223.2 229.1 

Avg. num. of citing papers in a topic 8.4 15.3 23.9 

Avg. num. of citances in a topic 13.5 21.9 35 

Avg. num. of citing sentences in a citance 1.5 1.3 1.3 

Avg. num. of cited reference sentences for a citance 1.8 1.5 1.4 

Num. of citation instances 249 329 480 

Num. of non-citation instances 27235 54704 87697 
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Table 3: Statistics of the CL-SciSumm 2017 corpus 

Statistics Training Test 

Num. of topics 30 10 

Avg. num. of sentences in a reference paper 223.3 201.4 

Avg. num. of citing papers in a topic 15.8 10.3 

Avg. num. of citances in a topic 19.8 15.9 

Avg. num. of citing sentences in a citance 1.4 1.4 

Avg. num. of cited reference sentences for a citance 1.6 1.5 

Num. of citation instances 929 231 

Num. of non-citation instances 147386 32204 

 

4.2 Performance Metrics 

 

We use the official CL-SciSumm metrics: precision (P), recall (R), and F1 score (F1). For every topic, it measures 

the overlap of sentence IDs between the system output and the gold standard. Precision is the fraction of outputted 

reference sentences that are truly cited reference sentences, recall is the fraction of truly cited reference sentences 

that are outputted, and F1 score is the harmonic mean of precision and recall: 

1 2
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Note that, given citance c, sysRef (c) is the set of sentence IDs in the Reference Offset field identified by the 

evaluated system, and annRef (c) is the set of sentence IDs in the Reference Offset field labelled by the human 

annotators. 

 

The reported scores are the average of those for all topics in the test dataset. The higher the score value, the better 

the system performance. 

 

4.3 Experimental Setup 

 

To build a classifier with more observed data, we merge the training and the development datasets of the CL-

SciSumm 2016 corpus as a new training dataset. As for the CL-SciSumm 2017 corpus, the original training dataset 

is used. Our implementation of classifiers and feature selection methods relies on Weka [18]. The parameters of 

feature selection methods are set as Weka’s defaults for simplicity. The considered feature numbers are: 5, 10, 30, 

50, 100, 150, 200, 250, 300. 

 

For a feature selection method and a feature number, the training data in the reduced feature space is produced and 

combined with synthetic minority class instances to form new training data. As mentioned in Section 3.3, SMOTE 

takes each minority class sample and introduces synthetic examples along the line segments joining any/all of the k 

minority class nearest neighbors. Currently, we use 10 nearest neighbors. The new training data is used to construct 

a classifier. Numerous parameter settings for a classifier (see Table 4) are examined using stratified 5-fold cross-

validation. The results are compared via statistical significance testing and the best setting is selected. Repeating the 

above steps, we collect all the best classifier settings for distinct feature numbers, given that a particular feature 

selection method is considered. The winner among the best settings is decided as the one of the highest mean F1 

over different rounds of cross-validation. We use the winning classifier setting and the corresponding feature 

selection method and feature number to train a classification model, and test it on the test dataset following the 

guidelines of Task 1A. For fair comparisons, the selection threshold  (see Section 3.5) is configured the same as 

0.057 for classifiers with and without feature selection. 

 

 

7 The value is suggested by [53], and is the 1.5 standard deviations from the mean of degree of relatedness distributed 

in the test dataset. 
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Table 4: List of the evaluated classifiers. DT stands for Decision Tree, NB stands for Naïve Bayes, and RF stands 

for Random Forest 

Algorithm Parameter combination 

k-NN k={1, 2, 4, 16, 32, 64}, nearestNeighbourSearchAlgorithm=LinearNNSearch (with 

distanceFunction=EuclideanDistance) 

DT binarySplits=false, minNumObj=2, unpruned=false, {reducedErrorPruning=true, 

{confidenceFactor={0.25, 0.5, 0.75}, reducedErrorPruning=false}} 

SVM SVMType=L2-regularized L2-loss support vector classification (dual), bias=1.0, 

cost={2^−14, 2^−12, …,2^0, …, 2^12, 2^14}, eps=1.0E−4, 

maximumNumberOfIterations=50000 

NB useKernelEstimator={true, false} 

RF maxDepth=0 (i.e., unlimited), numFeatures=sqrt(#(features)), numIterations={10, 50, 

100, 300, 500, 750, 1000, 3000, 5000} 

 

4.4 Results and Discussions 

 

Tables 5-9 respectively list the scores of k-NN, Decision Tree (DT), SVM, Naïve Bayes (NB), Random Forest (RF) 

classifiers, in combination with different feature selection methods. WAF (a.k.a. with-all-features) denotes that all 

343 features are used (i.e., no feature selection is applied), NF represents the considered feature numbers, and Impr. 

means the relative improvement8 obtained from applying feature selection. The observations of the results suggest 

the following considerations: 

 

• The classification results of the use of the reduced feature sets (i.e., the proposed method) are generally 

improved compared to those corresponding to the use of the whole feature set. The results on the CL-

SciSumm 2016 corpus show that: (1) the improvements of k-NN and DT with feature selection are 

significant (averagely 9.6%9 for k-NN and 30.8% for DT); (2) the improvements of NB and RF with feature 

selection are moderate (averagely 4.4% for NB and 3.3% for RF); and (3) for most SVM combinations, only 

slight improvements (around 1-2% and averagely 0.9%) are obtained. SVM+GR and SVM+IG are two 

exceptions, which have inferior results to the direct SVM. The results on the CL-SciSumm 2017 corpus 

show that DT with feature selection has significant improvements (averagely 19.5%), while the 

improvements of k-NN, SVM, NB, and RF with feature selection are moderate (averagely 4% for k-NN, 

2.7% for SVM, 6.1% for NB, and 3.9% for RF). Note that DT using the whole feature set is seen predicting 

many false positives, and has relatively poor results on both the CL-SciSumm 2016 and 2017 corpora. We 

conjecture that DT may overfit the training data in the full feature space. In this viewpoint, DT with feature 

selection helps reduce overfitting, leading to substantial increases in performance. Additionally, SVM with 

feature selection has relatively slight improvements on both the CL-SciSumm 2016 and 2017 corpora. SVM 

is an approximate implementation of a bound on the generalization error, that depends on the margin, but is 

independent of the dimensionality of the feature space [7]. Thus, feature selection methods might have no 

increased performance guarantees, provided that the regularization parameters are properly tuned over the 

use of the whole feature set. 

• There is no single feature selection that outperforms all the others. For example, GR outperforms CHI on the 

CL-SciSumm 2016 corpus when integrated with k-NN. On the same data, conversely, CHI is superior to GR 

when integrated with DT. It is noted that the effectiveness of the whole classification system is generally due 

to the combined effect of classifier and feature selection. 

• The number of selected features is generally less than the total number of available features. It is also viewed 

that the number of the most useful features depends on the classification algorithm, and varies for distinct 

feature selection methods. The observations on both the CL-SciSumm 2016 and 2017 corpora illustrate that: 

(1) relatively small feature subsets (around 5-50 features) are suggested for k-NN; (2) regarding DT and NB, 

small feature subsets (around 30-100 features) are effective in most cases, although 200-300 features are 

 

8 The relative improvement is calculated by (b−a)/a100 when b is compared to a. 
9 The average is computed over performance increases obtained by distinct feature selection methods. In this case, 

(9.3%+12.3%+9.3%+12.8%+10.9%+2.7%)/6=9.6%. 



Feature Selection and Classification Integrated Method for Identifying Cited Text Spans  

for Citances on Imbalanced Data, pp., 355-373 

 

366 

Malaysian Journal of Computer Science, Vol. 34 (4), 2021 

selected in some cases; (3) for SVM and RF10, in contrast, large feature subsets (around 200-300 features) 

are implied. 

 

Table 5: Results of k-NN with distinct feature selection methods (best performance bold-faced) 

 CL-Scisumm 2016 CL-SciSumm 2017 

 NF F1 Impr. NF F1 Impr. 

WAF All 0.1098 -- All 0.1070 -- 

CHI 10 0.1200 9.3% 5 0.1112 3.9% 

GR 30 0.1233 12.3% 30 0.1104 3.2% 

IG 10 0.1200 9.3% 10 0.1118 4.5% 

RE 30 0.1238 12.8% 50 0.1123 5.0% 

SAE 10 0.1218 10.9% 30 0.1129 5.5% 

SU 5 0.1128 2.7% 10 0.1091 2.0% 

 

Table 6: Results of DT with distinct feature selection methods (best performance bold-faced) 

 CL-Scisumm 2016 CL-SciSumm 2017 

 NF F1 Impr. NF F1 Impr. 

WAF All 0.0900 -- All 0.0957 -- 

CHI 50 0.1343 49.2% 30 0.1082 13.1% 

GR 150 0.1096 21.8% 50 0.1144 19.5% 

IG 50 0.1253 39.2% 50 0.1209 26.3% 

RE 5 0.1073 19.2% 30 0.1104 15.4% 

SAE 200 0.1141 26.8% 100 0.1153 20.5% 

SU 50 0.1155 28.3% 50 0.1168 22.0% 

 

Table 7: Results of SVM with distinct feature selection methods (best performance bold-faced) 

 CL-Scisumm 2016 CL-SciSumm 2017 

 NF F1 Impr. NF F1 Impr. 

WAF All 0.1425 -- All 0.1303 -- 

CHI 250 0.1442 1.2% 200 0.1332 2.2% 

GR 250 0.1402 −1.6% 200 0.1324 1.6% 

IG 200 0.1421 −0.3% 250 0.1319 1.2% 

RE 250 0.1454 2.0% 250 0.1343 3.1% 

SAE 150 0.1449 1.7% 200 0.1347 3.4% 

SU 150 0.1456 2.2% 150 0.1364 4.7% 

 

Table 8: Results of NB with distinct feature selection methods (best performance bold-faced) 

 CL-Scisumm 2016 CL-SciSumm 2017 

 NF F1 Impr. NF F1 Impr. 

WAF All 0.1288 -- All 0.1141 -- 

CHI 30 0.1338 3.9% 10 0.1212 6.2% 

GR 300 0.1317 2.3% 100 0.1183 3.7% 

IG 30 0.1358 5.4% 50 0.1163 1.9% 

RE 250 0.1305 1.3% 50 0.1274 11.7% 

SAE 30 0.1436 11.5% 30 0.1259 10.3% 

SU 200 0.1310 1.7% 150 0.1172 2.7% 

 

 

 

 

 

10 RF performs well when the feature number is high since it generates a tree based on a sub-sample of the data and a 

random subset of features [9]. 
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Table 9: Results of RF with distinct feature selection methods (best performance bold-faced) 

 CL-Scisumm 2016 CL-SciSumm 2017 

 NF F1 Impr. NF F1 Impr. 

WAF All 0.1310 -- All 0.1239 -- 

CHI 250 0.1346 2.7% 200 0.1264 2.0% 

GR 200 0.1365 4.2% 200 0.1311 5.8% 

IG 300 0.1355 3.4% 250 0.1324 6.9% 

RE 300 0.1339 2.2% 200 0.1239 0.0% 

SAE 200 0.1360 3.8% 300 0.1302 5.1% 

SU 300 0.1357 3.6% 250 0.1283 3.6% 

 

Table 10 and Table 11 summarize the best results of the proposed method. For comparison purposes, the results 

obtained by using the whole feature set and the official Task 1A results of the top 5 CL-SciSumm 2016 and 2017 

systems are also presented. Table 10 shows that for the CL-SciSumm 2016 corpus, k-NN+RE outperforms k-NN by 

12.7%, DT+CHI outperforms DT by 48.9%, SVM+SU outperforms SVM by 2.1%, NB+SAE outperforms NB by 

11.6%, and RF+GR outperforms RF by 4.6%. Table 11 shows that for the CL-SciSumm 2017 corpus, k-NN+SAE 

outperforms k-NN by 5.6%, DT+IG outperforms DT by 26.0%, SVM+SU outperforms SVM by 4.6%, NB+RE 

outperforms NB by 11.4%, and RF+IG outperforms RF by 6.5%. Besides, Table 10 presents that three models of the 

proposed method have substantially superior performance to the Top-1 CL-SciSumm 2016 system 

(Sys15$tfidf+st+sl). They are SVM+SU with an improvement of 9.0%, NB+SAE with an improvement of 7.5%, 

and RF+GR with an improvement of 2.2%. DT+CHI ties with Sys15$tfidf+st+sl. Table 11 presents that three 

models of the proposed methods have substantially superior performance to the Top-1 CL-SciSumm 2017 system 

(NJUST Run 2). They are SVM+SU with an improvement of 9.7%, NB+RE with an improvement of 2.4%, and 

RF+IG with an improvement of 6.5%. Overall, the results reveal the benefits of feature selection in significantly 

boosting classification performance. Our method is also found performing competitively, compared to the Top5 CL-

SciSumm 2016 and 2017 systems. 

 

Table 10: Performance comparison of classifiers with and without feature selection and the top 5 CL-SciSumm 2016 

systems (best performance bold-faced) 

System Rank F1 

A. Classifiers without feature selection 

k-NN 13 0.110 

DT 15 0.090 

SVM 3 0.143 

NB 8 0.129 

RF 7 0.131 

B. Classifiers with feature selection 

k-NN+RE (NF: 30) 11 0.124 

DT+CHI (NF: 50) 5 0.134 

SVM+SU (NF: 150) 1 0.146 

NB+SAE (NF: 30) 2 0.144 

RF+GR (NF: 200) 4 0.137 

C. Top 5, median, and worst CL-SciSumm 2016 systems 

Sys15$tfidf+st+sl [39] 5 0.134 

Sys8$Fusion [31] 9 0.126 

Sys8$Jaccard Focused [31] 9 0.126 

Sys8$Voting1 [31] 12 0.116 

Sys8$Voting2 [31] 14 0.108 

Median system 16 0.039 

Worst system 17 0.008 
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Table 11: Performance comparison of classifiers with and without feature selection and the top 5 CL-SciSumm 2017 

systems (best performance bold-faced) 

System Rank F1 

A. Classifiers without feature selection 

k-NN 13 0.107 

DT 15 0.096 

SVM 3 0.130 

NB 9 0.114 

RF 5 0.124 

B. Classifiers with feature selection 

k-NN+SAE (NF: 30) 11 0.113 

DT+IG (NF: 50) 8 0.121 

SVM+SU (NF: 150) 1 0.136 

NB+RE (NF: 50) 4 0.127 

RF+IG (NF: 250) 2 0.132 

C. Top 5, median, and worst CL-SciSumm 2017 systems 

NJUST Run 2 [35] 5 0.124 

NJUST Run 5 [35] 7 0.123 

NJUST Run 4 [35] 9 0.114 

TUGRAZ Run 2 [16] 12 0.110 

CIST Run 1 [32] 13 0.107 

Median system 16 0.074 

Worst system 17 0.014 

 

Measuring the similarity between the feature subsets generated by different feature selection methods can be useful, 

for example, to identify diverse feature selection methods for constructing ensembles. As proposed in [28], the 

similarity can be calculated by the consistency index for two subsets. More precisely, 
2

( , )
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k n k

−
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−
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which A and B are two feature subsets of the full feature set FS, |A| = |B| = k, 0 < k < |FS| = n, and r = |A∩B|. 

Analyzed from the CL-SciSumm 2016 corpus, Table 12 presents the similarity between different feature selection 

methods, given 30 features selected by each method. Pairs of (CHI, IG), (GR, SU), and (IG, SAE) have a large 

similarity value greater than 0.7, implying that similar features are selected. Pairs of (CHI, RE), (GR, SAE), (IG, 

RE), and (RE, SAE) have a similarity lower than 0.3, in contrast, implying that dissimilar features are selected. Note 

that we also observe different similarity results for varying number of selected features. 

 

Table 12: Similarity between different feature selection methods (30 features selected by each method), analyzed 

from the CL-SciSumm 2016 corpus 

 CHI GR IG RE SAE SU 

CHI − 0.45 0.89 0.23 0.67 0.63 

GR  − 0.34 0.49 0.16 0.82 

IG   − 0.12 0.78 0.53 

RE    − 0.05 0.49 

SAE     − 0.34 

SU      − 

 

Lastly, Table 13 provides a breakdown by category of the top 50 most prominent features in the CL-SciSumm 2016 

corpus. For simplicity, the ranking of features is built via Borda count [33]. The aggregation ranks every feature 

according to its accumulated order of preferences made by different feature selection methods. The column “# of 

features” means, for a feature, the number of its variations listed in the top 50. It is seen that the lexical features are 

the majority, which dominates 82%. The surface features account for the remaining 18%. It is somewhat surprising 

that complex features (e.g., knowledge-based, corpus-based, and syntactic features) do not make the top 50 feature 

list. We perform further analysis regarding two factors: the granularity of words and the context of r. For the 
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granularity of words, 1-gram (i.e., single word) accounts for 78%, 2-gram for 6%, longest common subsequence 

(LCS) for 10%, and skip-bigram with a maximum skip distance of 4 plus unigram (SU4 for short) for 6%.11 

Regarding the context of r, no context considered accounts for 50%, the use of r’s previous sentence for 26%, and 

the use of r’s next sentence for 24%. The preliminary analysis is valuable, for it can help further feature engineering 

to discover potentially more effective features. 

 

Table 13: Statistics of the top 50 most prominent features in the CL-SciSumm 2016 corpus 

Feature family Feature name # of features 

Lexical (82%) 

 

Word overlap 8 (16%) 

ROUGE score 15 (30%) 

Discriminative degree of citation-related word pairs 18 (36%) 

Surface (18%) 

 

Num. of named entities 1 (2%) 

Sentence length 1 (2%) 

Similarity with title 1 (2%) 

TextRank centrality 6 (12%) 

 

5.0 CONCLUSIONS AND FUTURE WORK 

 
This paper focuses on identifying cited text spans for citances, the first step towards scientific paper summarization. 

We approach the task as binary classification to distinguish relevant pairs of citances and reference sentences from 

irrelevant pairs. We propose a new method to enhance classification performance by integrating feature selection 

and classification techniques (see Fig. 2). Various combinations of feature selection methods and classification 

algorithms are explored. The feature selection techniques investigated are filter-based. They are χ2-Statistics, 

Information Gain, Gain Ratio, Relief-F, Significance Attribute Evaluation, and Symmetrical Uncertainty. Once the 

most relevant (or discriminatory) features are selected, the classification algorithms, namely, k-Nearest Neighbors, 

Decision Tree, Support Vector Machine, Naïve Bayes, and Random Forest, are applied to build predictive 

classifiers. Practically, the classification task suffers the class imbalance problem since the training data has far less 

relevant pairs of citances and reference sentences (i.e., citation instances) than irrelevant pairs (i.e., non-citation 

instances). We apply SMOTE to introduce synthetic biases towards the minority, forcing the learner to focus more 

on correctly classifying the minority. The proposed method is evaluated using the CL-SciSumm 2016 and 2017 

corpora. Experimental results reveal that the application of feature selection helps identify a subset of features that 

can accurately represent the data, reduce the complexity of the feature space, and produce substantial improvements 

in performance (see Tables 5-9). It is also found that our method is competitive to the state-of-the-art methods in the 

CL-SciSumm evaluations (see Table 10 and Table 11). 

 

Future work will consider the following: (1) investigating the feasibility of additional feature selection techniques, 

e.g., wrapper and embedded methods, (2) studying combinations of feature selection methods for constructing 

ensembles, and (3) further feature engineering based on the analysis of the most prominent features to design 

potentially more effective features. 
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