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ABSTRACT 

Spectrum sensing is one of the core functionality of a cognitive radio system. Accurate identification of primary 
system signal can prevent interference and provide maximum protection to licensed users. However, many 
challenges associated with spectrum sensing still exist. Examples include shadowing, multipath fading of the 
primary user signal, hidden primary user problem and many more. To circumvent the challenges faced by sensing 
device, the cooperative decision from participating devices has been proposed in the literature. In this paper, we 
suggest a cooperative decision based on support vector machine (SVM) for spectrum sensing in vehicular 
communication environment to mitigate shadowing and multipath fading. Spectrum sensing can be formulated as a 
pattern recognition problem with sensing results grouped into two distinct classes corresponding to the presence or 
absence of a primary user signal. Therefore, we employ SVM at the fusion centre to classify the primary signal 
correctly. The roadside units along the highway are selected to act as the fusion centre where sensing decision is 
made. The performance of the proposed scheme is evaluated using receiver operation characteristic curves in 
MATLAB. We compare the probability of detection for the proposed cooperative scheme to hard fusion rule. The 
simulation result shows that SVM based cooperative decision performed better than hard fusion rule. 

Keywords: Spectrum Sensing, Cooperative Decision, Cognitive Radio, SVM, VANET 

1.0 INTRODUCTION 

Vehicular Ad Hoc Network (VANET) has an important role in the Intelligent Transportation System (ITS) to 
safeguard the lives of people on the roads. Drivers can get online feedback about traffic conditions in advance to 
allow a smooth flow of traffic. On the other hand, passengers can experience a pleasant journey through 
entertainment provided by different service providers such as online peer-to-peer games, Internet Protocol 
Television (IPTV) [1], etc. VANET defines two types of communications to transmit messages for ITS applications 
[2]. First, vehicle to vehicle (V2V) communication and the second one is vehicle to infrastructure (V2I) 
communication. In V2V communication, links are established between two or more vehicles on the road in the ad 
hoc manner, while in V2I, vehicles establish communication links with stationary roadside units (RSU). 
 
With an increase in the number of emerging applications and services developed for wireless technologies, demand 
for bandwidth has been growing steadily. For example, it is envisioned that by 2020, there will be more than 50 
billion devices connected to the Internet mostly through wireless communication [3]. This poses a major challenge 
on the already scarce radio frequency spectrum which is a finite resource. For instance, the Federal Communications 
Commission (FCC) in the USA has allocated almost all the channels in the communicable frequency bands to 
licensed users [4]. The unlicensed spectrum channels are reserved for Industrial, Scientific and Medical (ISM) usage 
and shared among different radio technologies such as Bluetooth, WiFi, Microwave ovens and emerging radio 
technologies. ITS applications have been allocated 75MHz at the 5.9GHz band for dedicated short range 
communication (DSRC) for V2V and V2I communications [5]. The 75MHz is divided into 7 channels with 10MHz 
each. 5MHz is reserved as guard band channel. Regardless, these channels can become congested, particularly 
during peak hours or accident scenarios, when the number of vehicles contending for the same channels increases 
[6]. In such situations, the delivery of delay sensitive safety and emergency messages becomes difficult.  
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Different solutions have been proposed to overcome congestion of 7 DSRC channels during peak hours and traffic 
jams or accident scenarios. One such solution is to use protocols which guarantee the quality of service based on 
priority [7]. The safety messages are given high priority while service messages such as infotainment are given low 
priority. Other solution includes adapting modulation scheme at MAC layer to meet the minimum quality of service 
(QoS) requirement [38]. However, important service applications may suffer from this approach when there is high 
vehicle density [8]. This is because many vehicles will be contending for the 7 channels to transmit the high priority 
safety messages. 
 
Cognitive radio (CR) technology has emerged as a promising solution to combat the scarcity of communication 
channels and provide bandwidth to emerging ITS applications through dynamic spectrum access (DSA). A CR is an 
intelligent software defined radio (SDR) that reconfigures its network parameters based on the network environment 
[9]. Preliminary work has shown that much of the licensed bands allocated to certain users are underutilized [10]. 
Unlicensed users, also called secondary users (SUs) can opportunistically access these underutilized radio frequency 
bands whenever the licensed users or primary users (PUs) are absent. In VANET, the SUs are vehicles on the road 
that can opportunistically use the licensed channels whenever there is congestion in the DSRC channels defined at 
the 5.9GHz band. However, there are many fundamental problems that need to be addressed before DSA can be 
integrated into a vehicular environment. One such problem is how to identify the underutilized radio spectrum in the 
licensed frequency bands. This challenge can be resolved through spectrum sensing. Spectrum sensing involves 
identification of free spectrum bands in frequencies of licensed users.  Within the vehicular environment, there are 
challenges encountered in spectrum sensing including multipath fading and shadowing of the PU signal due to 
obstacles. Therefore, novel methods of detecting spectrum opportunities in Cognitive Vehicular Networks (CVN) 
must be developed. One way to identify the presence of the primary user (PU) signal in CVN is by embracing 
techniques that can classify the PU signal correctly. In this regard, machine learning algorithms are appropriate for 
deciding the presence or absence of the PU signal. Machine learning techniques have the potential to recognize 
patterns in data. Pattern recognition is used to classify a given set of data into different categories. Thus, spectrum 
sensing in CVN can be formulated as a pattern recognition problem.  The PU signal in pattern recognition is 
classified as either present or absent. Consequently, classification algorithms based on machine learning can be 
applied. In recent years, machine learning algorithms have been proposed for spectrum sensing in cognitive wireless 
radio networks [11].  
 
In this paper, we propose a cooperative decision for spectrum sensing in CVN based on support vector machine 
(SVM). SVM is a supervised machine learning technique that has been applied to data classification [12]. In the 
proposed scheme, individual vehicles perform sensing using energy detection technique. Once individual vehicles 
decide the spectrum occupancy locally, the results are sent to a central node (RSU) which constructs vectors of 
energy levels for classification. Cooperative decision at the RSU is proposed to mitigate multipath and shadowing 
experienced by individual vehicles. This is achieved through spatial and diversity gain obtained from participating 
vehicles cooperatively. Nevertheless, before online classification, the RSU passes through a training phase. This is 
done offline once a large number of training samples are collected from passing vehicles. The trained RSU classify 
subsequent test energy levels submitted from cooperating vehicles into distinct classes on which the decision of 
spectrum occupancy is made. In SVM, the training energy levels constructed at the RSU for training must be 
accompanied by a label indicating the class. Once the training energy vectors are obtained, different kernel functions 
are employed for learning purposes. The kernel functions are used to map input training energy vectors into high 
dimensional feature space to separate classes linearly. In this paper, we select three kernel functions; linear, 
polynomial and Gaussian radial basic function (RBF). We evaluate the performance of the proposed scheme using 
receiver operation characteristic (ROC) curves and compare the simulation results to the hard fusion rule at RSU. 
 
The rest of the paper is organized as follows. In section 2, we review some related literature on sensing schemes 
proposed for CVN environment. In section 3, we present the analytical model for spectrum sensing and cooperative 
decision at RSU using SVM.  The simulation results are presented in section 4 and section 5 concludes the paper. 
 
2.0 RELATED SENSING SCHEMES IN CVN 

In this section, we give an overview of spectrum sensing techniques proposed in the literature. In [13], a belief 
propagation scheme for the vehicular network in a highway scenario is proposed. Vehicles send belief messages 
about the presence of PU to its neighbors on which the cooperative decision is made. However, the model was 
validated using only 3 nodes. Authors in [14] examined the impact of mobility on spectrum sensing in CVN and 
proposed a cooperative spectrum management scheme for CVN. Their proposed sensing scheme is based on 
weighted majority correlation decision making. Vehicles on the highway are divided into cells to sense the licensed 
spectrum periodically. At regular intervals, vehicle broadcast messages to neighbors for correlation decision making. 
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In [15], a distributed cooperative spectrum sensing which studies the receiver's uncertainty is proposed. The authors 
suggest a gradient based cooperative spectrum sensing in which each SU detects the channel energy level locally 
using energy detection techniques. The result of the observed signal is broadcasted to its immediate neighbors in the 
topology which has been authenticated using identifier based authentication protocol. Based on the energy received 
from its neighbors, each SU updates its energy status value to reach a consensus in an iterative manner, thereafter, 
the decision of the PU occupancy is made by individual SU. The schemes proposed are evaluated in V2V 
communication. The performance of the approaches described degrades with a low number of vehicles participating 
in the cooperative decision. In addition, they demand more bandwidth to satisfy the iterative communication of 
sensing results before a consensus of sensing results is reached [13]. These schemes differ from the proposed 
approach in this paper where our approach is based on learning as both previously learned results and current 
sensing results are used in deciding the PU occupancy state. Therefore, it performs better even in low vehicle 
density.  In addition, as more vehicles participate in sensing, the accuracy of predicting the right category of PU 
signal state also increases. The learning can be done offline to increase the efficiency for RSU.  
 
Authors in [16] recommended an infrastructure based spectrum sensing technique for the vehicular environment to 
identify ISM bands along the highway. A study by [17] explored challenges in using wideband sensing to detect PU 
activity and impact of vehicle mobility on time of spectrum sensing against the complexity of algorithms. Authors in 
[18] identified synchronization of sensing outputs as a challenge in infrastructure based cooperative sensing. This is 
attributed to the high mobility of vehicles making it difficult to synchronize sensing results.  This is because samples 
of the same channel can be collected at different time and location by the same vehicle. To overcome the 
synchronization challenge, they recommended asynchronous cooperative spectrum sensing based on centralized and 
distributed implementation. The proposed scheme exploits the spatial and temporal diversities for spectrum sensing 
and access in a cognitive vehicular environment. In [35], a spectrum sensing which predicts availability channel is 
proposed. The scheme uses prior knowledge of channel availability probability and Bayesian inference to predict 
free channels in the future. Other cooperating sensing schemes proposed based on hard fusion rule includes [33] and 
[34]. In hard fusion, only one bit (1 or 0) is sent to the fusion center for determining the PU occupant state. 
Nevertheless, these schemes also suffer some setbacks. In low vehicle density, the performance is not optimal 
because they base their decision on current sensing results. This is opposed to the machine learning approach in 
which previously learned sensing results are used to refine the decision. With more vehicles participating in the 
cooperative decision, the machine learning approach increases its decision accuracy. 
 
Another approach to acquiring radio frequency from licensed channels is by constructing a spectrum availability 
database [36]. The spectrum database approach was proposed to provide maximum protection to licensed users. In 
this approach, vehicles on the road equipped with Internet or geo-location capabilities are permitted to query the 
spectrum databases. In most cases, the licensed channels that can be populated in the database include TV channels 
and wireless microphone bands [36]. To implement the database approach, three modes of devices were proposed 
[37]. The first called Mode II includes vehicles with Internet capabilities to query the database. The second mode 
includes vehicles that depend on Mode II vehicles to get free spectrum. The third mode includes sense-only 
vehicles. Therefore, even in the presence of database approach spectrum sensing is promoted. Furthermore, database 
query overhead is introduced if there are more vehicles accessing the database. In addition, the cost and time of 
creating and maintaining the spectrum database are disadvantageous. Hence, the method proposed in this paper can 
help alleviate spectrum scarcity through accurate spectrum sensing. Our approach localizes spectrum results and no 
querying the database through the Internet is needed. A comprehensive spectrum sensing approaches and open 
issues in CVN has been reported in [39]. 
 
In recent years, cooperative spectrum decision based on machine learning has been proposed for cognitive radio 
networks (CRN). For instance, a study by [19] proposed machine learning techniques in cognitive radio networks. 
They investigated the performance of both supervised and unsupervised learning. Simulation results showed that 
SVM performed better than the K-nearest-neighbor method for supervised learning. Conversely, K-mean clustering 
performed better than Gaussian mixture model method for unsupervised learning. Other implementations based on 
SVM are presented in [20-22]. In [21], SVM is combined with genetic algorithms and self-organizing maps to 
achieve better sensing performance. In another study by [22], they proposed an eigenvalue based spectrum sensing 
with SVM in a multi-antenna cognitive radio. A reinforcement learning based cooperative sensing is proposed in 
[23] to address the cooperation overhead problem. Cooperative decision techniques based on machine learning have 
shown some improvements in obtaining accurate sensing results. Techniques based on machine learning have not 
been applied to spectrum sensing in CVN. Hence, we aim to exploit support vector machine, which is a supervised 
machine learning technique to classify sensing results in order to improve detection performance in CVN. Improved 
detection accuracy will protect the PU system from interference that may be caused by unlicensed users. Machine 
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learning techniques are applied to cooperative spectrum sensing decision in CVN environment while taking VANET 
characteristics (e.g. vehicle speed) into consideration. 

 
3.0 SYSTEM MODEL 

This section describes the network model and spectrum sensing for both single vehicle and cooperating decision 
based on SVM. Furthermore, we outline the assumptions made in the formulation of the proposed model. 

3.1 Network model 

We assume that the vehicle is equipped with two antennas, one antenna to work with IEEE802.11p/WAVE to 
operate on 5.9GHz DSRC frequency bands. Another antenna configured with a CR to communicate over other 
licensed frequency bands when the 5.9GHz channels are congested. Primary users (PUs) are licensed TV bands 
users while vehicles are secondary users (SUs) that opportunistically access the TV bands. We consider a highway 
scenario divided into distinct segments, each segment is covered by a roadside unit (RSU).  Fig. 1 illustrates this 
notion.  

 

Fig. 1: Cognitive vehicle network 

When a vehicle enters a congested road segment, it performs sensing for available free channels from licensed 
frequency bands that it can use for communication. The outcomes of the individual sensing will be sent to RSU on 
the common control channel of DRSC.  We assume that the channels between vehicles and RSU are independent 
and identically distributed (i.i.d) and vehicle follows the freeway mobility model [24]. The sensing channel between 
the PU and SUs follows a correlated Rayleigh channel.  
 
In congested road segments, vehicles move at a relatively slow velocity varying from 0 to 10km/h in highly dense 
traffic jams and up to 40km/h in medium dense road segments [25]. The transmission range for each RSU is 
assumed to be 300m [26]. Hence, a vehicle in a medium to dense traffic is expected to be within RSU coverage 
between 27 seconds when moving at 40km/h to 108 seconds when moving at 10km/h (i.e. time = distance/
speed(velocity)). This can be considered to be enough time for vehicles to identify spectrum and communicate on 
the identified channels. 

 
3.2 Per-Vehicle sensing with energy detection 

Energy detector is the most commonly used spectrum sensing technique, due to its low computational complexity. 
In addition, prior knowledge of the PU signal is not needed. The spectrum occupancy of the PU is determined by 
measuring the signal power on the target frequency bands. Subsequently, the measured results are compared to a 
predefined threshold for that frequency band. The energy detector is very fast in detecting the presence or absence of 
the PU signal because it relies on the received energy signal. The fast detection property of energy detector makes it 
well suited for VANET environment where vehicles need to detect spectrum availability in a prompt and timely 
manner. 
 
Each vehicle in the model can only sense one channel over the sensing time interval т in the segment. During the 
sensing period, M samples are collected. For each segment, there are N vehicles participating in the spectrum 
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sensing decision. The decision of the PU signal on the individual vehicle is based on the Neyman-Pearson and 
Bayes binary hypothesis test defined as [27]: 

z୧(k) = ൜
n(k)                               H଴

ℎ𝑟௜(k) +  n(k)             Hଵ
                          (1) 

for 𝑖 =  1, 2, 3, … , 𝑁 and 𝑘 =  1, 2, 3, … , 𝑀,  𝑧 ௜(𝑘) is the signal received by the ith vehicle. The signal transmitted 
by the PU, is given by 𝑟௜(𝑘) and ℎ represent the antenna gain between SU and PU. The 𝑛௜(𝑘) is the additive white 
Gaussian noise, which is i.i.d with mean zero and variance 𝜎௡

ଶ (i.e., n௜(𝑘)~Ɲ(0, 𝜎௡
ଶ)). The presence and absence of 

the PU signal is given by 𝐻ଵ and 𝐻଴ respectively. The test energy statistic 𝑑௜  for each vehicle can be formulated as: 
 

𝑑௜ = ∑ |𝑧௜(𝑘)|ଶெ
௞ୀଵ                                                    (2) 

For sufficiently large sample size of M ≥ 250 observed within a short sensing duration, 𝑑௜ can be approximated 
using central limit theorem (CLT) as a Gaussian distribution [28]. Therefore, the power density function (PDF) of 𝑑௜  
at vehicle 𝑖 is approximated as: 

𝑑௜  ~ ൜
Ɲ(𝑀𝜎௡

ଶ, 𝑀𝜎௡
ସ)                            𝑓𝑜𝑟 𝐻଴

Ɲ[(𝑀 + µ௜)𝜎௡
ଶ, (𝑀 + µ௜)𝜎௡

ସ]   𝑓𝑜𝑟 𝐻ଵ

           (3) 

where  

µ௜ = ∑ |ℎ|ଶெିଵ
௞ୀ଴

௲ೞ

ெఙ೙
మ                                                 (4) 

In Eq. 4, the value of 𝛦௦ is equal to ∑ |𝑟௜(𝑘)|ଶெ
௞ୀଵ  which is the transmitted energy signal of the PU for M samples of 

each detection interval. All vehicles report the estimated energy signal to the fusion center where the spectrum 
occupancy is determined. The fusion center constructs the energy levels estimated at each vehicle into an energy 
vector as,  

𝑋 =  (𝑑ଵ, 𝑑ଶ, 𝑑ଷ, … , 𝑑௜ , … , 𝑑ே)்                           (5) 

where 𝑇 is the transpose of the energy vector. 

3.3 Primary User detection model 

The core function of spectrum sensing is to determine whether primary user signal is present or absent in the given 
road segment in order to avoid interference to licensed users. Therefore, we formulate the PU occupancy as a 
classification problem. We assume the PU occupancy follows an ON/OFF activity model. For each ON period (𝐻ଵ), 
the PU is assumed to be active and no SU can transmit on that channel. The OFF period (𝐻଴) represents an instance 
when the PU is idle in which case SU can communicate on the channel. Hence, we can group the PU occupancy 
state into two availability classes (ON and OFF) for a given road segment 𝑆௝  as: 

𝑌 = ൜
−1 𝑖𝑓 𝑛𝑜 𝑃𝑈 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑆௝

1 𝑖𝑓 𝑃𝑈 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛  𝑆௝
                                (6) 

The OFF period corresponds to channel availability represented by 𝑌 =  −1 and ON period corresponds to channel 
unavailable given by  𝑌 =  1. In our model, 𝑌 is a label that is used in training phase for SVM.  For each test statistic 
𝑋௜ ∈ {𝑑ଵ, … 𝑑௜ , … 𝑑ே} of vehicles obtained from Eq. 2, there is an accompanying label  𝑌௜ ∈ {1, −1} which 
determines the occupancy state of the PU signal.  Therefore, 𝑌 is the label sent to RSU determined by each vehicle 
based on individual sensing results (either 𝐻ଵ or 𝐻଴). If the vehicle determines the presence of PU signal (i.e. 𝐻ଵ) 
locally based on energy detector (Section 3.2) then the label 𝑌 will be 1. On the other hand, if the vehicle determines 
the absence of the PU signal (i.e. 𝐻଴) locally then the label 𝑌 will be -1. Hence, the corresponding vector at RSU 
will be  𝑌 =  (𝑌ଵ, 𝑌ଶ, 𝑌ଷ, … , 𝑌௜ , … , 𝑌ே)் for  𝑌௜ ∈ {1, −1} .  𝑁 represents the total number of vehicles participating in 
sensing. 

3.4 Cooperative decision at RSU using SVM 

The proposed cooperative decision at RSU serves to correctly classify PU channel availability given the test energy 
vector. Prior to online classification, the RSU has to be trained to classify the subsequent test energy vectors 
correctly.  
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Let 𝐷 = {(𝑋ଵ, 𝑌ଵ), (𝑋ଶ, 𝑌ଶ), ⋯ , (𝑋ே , 𝑌ே)} be the training data, such that 𝑋௜ ∈ {𝑑ଵ, … 𝑑௜ , … 𝑑ே} and 𝑌௜ ∈ {𝑌ଵ, … 𝑌௜ , … 𝑌ே} 
for 𝑖 = 1,2,3, … 𝑁, where N corresponds to the total number of training samples obtained from individual vehicles 
participating in the cooperative decision. 𝑋௜ is a training energy value for the individual vehicle and 𝑌௜ is the 
corresponding availability label determined by the vehicle at the local level after sensing. The label 𝑌 =  1 
represents the presence of the PU while 𝑌 = -1 denotes the absence of any PU in 𝑆௝. The goal of SVM is to find the 

optimal separating hyperplane between the positive and negative classes given by 
ଶ

||௪||
, as shown in Fig. 2.  

 

Fig. 2: SVM concept example 

However, in low SNR, the training samples are not separated linearly [22]. Thus, we introduce a non-linear kernel 
function ∅(𝑋) that will map the training data into higher dimensional function space in order to linearly separate the 
classes. Therefore, the classifier should satisfy the following conditions: 

〈𝑤. ∅(𝑋௜)〉 + 𝛽 ≥ 1     𝑓𝑜𝑟 𝑌௜ = 1        (7) 
〈𝑤. ∅(𝑋௜)〉 + 𝛽 ≤ −1     𝑓𝑜𝑟 𝑌௜ = −1             

 
where w is the weighing vector, 𝛽 is the bias that moves the hyperplane away from the origin and the quantity 〈. 〉 is 
the inner product. Eq. 7 can be rephrased as: 
 

𝑌௜(〈𝑤. ∅(𝑋௜)〉 +  𝛽) ≥ 1    ∀𝑖                         (8) 

It is difficult to achieve ideal linearly separable hyperplane that satisfies Eq. 8 for each training data set. Therefore, 
to avoid overfitting the data, a slack variable 𝜌௜ is introduced for possible classification errors. Hence, Eq. 8 
becomes 

𝑌௜(〈𝑤. ∅(𝑋௜)〉 +  𝛽) ≥ 1 − 𝜌௜     ∀𝑖, 𝜌௜ ≥ 0            (9) 

The training samples for which 𝜌௜ = 0 are considered to be classified correctly and those that lie inside 0 ≤ 𝜌௜ ≤ 1 
are considered to be within marginal classification errors and are on the correct side of the decision boundary. On 
the other hand, if 𝜌௜ ≥ 1, it is considered a classification error, this is illustrated in Fig. 2. Therefore, the goal is to 
minimize the sum error while maximizing the margin of the classifier. This can be achieved as follows 

𝑚𝑖𝑛
ଵ

ଶ
‖𝑤‖ଶ + 𝜃 ∑ 𝜌௜

௅
௜ୀଵ  Subject to 𝑌௜(〈𝑤. ∅(𝑋௜)〉 +  𝛽) ≥ 1 − 𝜌௜ ,            (10) 

                                                                       𝜌௜ ≥ 0 , i = 1, 2,…, N 
 
where ‖𝑤‖ଶ is the inner product given by 𝑤் . 𝑤 while 𝜃 is a soft margin constant [29]. The resulting optimization 
problem is called a convex optimization problem and can be solved using Lagrangian function ℒ as follows: 

ℒ(𝑤, 𝛽, 𝜌, 𝛼, 𝛿) =            ൞

ଵ

ଶ
‖𝑤‖ଶ + 𝜃 ∑ 𝜌௜

ே
௜ୀଵ −

∑ 𝛼௜[𝑌௜(〈𝑤. ∅(𝑋௜)〉 + 𝛽) − 1 + 𝜌௜]ே
௜ୀଵ −

∑ 𝛿௜𝜌௜
ே
௜ୀଵ

ൢ     (11) 

where 𝛼௜ and 𝛿௜ are Lagrangian multipliers. The training samples where 𝛼௜ > 0 are called support vectors, and lies 
on one of the two hyperplanes. When Karush-Kuhn-Tucker (KKT) condition is applied to Eq. 11, the following can 
be deduced: 
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𝑤 = ∑ 𝛼௜𝑌௜∅(𝑋௜)
ே
௜ୀଵ                              (12) 

∑ 𝛼௜𝑌௜
ே
௜ୀଵ = 0                                       (13) 

𝛼௜ + 𝛿௜ = 𝜃                                           (14) 
 

Since 𝛼௜ ≥ 0 , we have 0 ≤ 𝛼௜ ≤ 𝜃 with 𝜃 setting the upper bound. In addition, since the values of 𝛼௜ are support 
vectors, the dual form of the problem defined in (11) in terms of support vectors can be formulated as follow [29]: 
 

ℒ(𝑤, 𝛽, 𝜌, 𝛼, 𝛿) = [∑ 𝛼௜
ே
௜ୀଵ − ∑ .ே

௜ୀଵ ∑ 𝑌௜𝑌௝𝛼௜𝛼௝〈∅(𝑋௜), ∅൫𝑋௝൯〉ே
௝ୀଵ ]    (15) 

Subject to ∑ 𝑌௜𝛼௜
ே
௜ୀଵ = 0, 0 ≤ 𝛼௜ ≤ 𝜃 for i=1,2…N 

By solving the convex optimization problem in the Eq. 15 and applying the quadratic programming algorithm, the 
nonlinear decision function is obtained as follows: 

𝑌(𝑋) = 𝑠𝑔𝑛(∑ 𝛼௜𝑌௜
ே
௜ୀଵ 𝑘(𝑋, 𝑋௜) + 𝛽)       (16) 

where 𝑠𝑔𝑛 is the sign function and 𝑘(𝑋, 𝑋௜) =  〈∅(𝑋௜), ∅൫𝑋௝൯〉 is the kernel function. Different types of kernel 
function can be used, including linear, polynomial and Gaussian radial basis function [29]. The linear kernel 

function is given by: 𝑘(𝑋, 𝑋௜) =  𝑋௜
்𝑋௝, polynomial kernel: 𝑘(𝑋, 𝑋௜) =  ൫𝑋௜

்𝑋௝ + 1൯
ௗ

, 𝑑 > 1 and the radial basic 

function (RBF) kernel:  𝑘(𝑋, 𝑋௜) = 𝑒𝑥𝑝 ቆ−
ฮ௑೔ି௑ೕฮ

మ

ଶఙమ ቇ [29]. 

4.0 PERFORMANCE AND SIMULATION ANALYSIS 

We evaluate the performance of the energy detector and kernel of SVM in terms of probability of detection over the 
Receiver Operating Characteristics (ROC) curves using MATLAB simulator. The simulation uses models defined in 
Section 3. The PU activity follows the ON and OFF model. The ON period corresponds to when the PU is 
transmitting on the licensed channels and the OFF period denotes the inactive PU. The probability of detecting the 
PU signal is given by 𝑃ௗ while the probability of false alarm detection is given by 𝑃௙. 𝑃ௗ refers to an instance when 
the PU signal is correctly identified given the test energy level 𝑑௜ (Eq. 2) and some threshold λ. Hence 𝑃ௗ =
 𝑃𝑟(𝑑௜ ≥ λ|𝐻ଵ) and 𝑃௙ =  𝑃𝑟(𝑑௜ < λ|𝐻଴) [30]. Based on the energy statistics 𝑑௜ , the 𝑃ௗ and 𝑃௙ of a vehicle at the 
local level can be assessed as follows [31]: 

𝑃௙ =
௰ቀெ

ଶൗ ,ఒ
ଶఙమൗ ቁ

௰൫ெ
ଶൗ ൯

    (17) 

and 

𝑃ௗ = 𝑄ಾ

మ

ቆට2𝜇௜
𝜎ଶൗ , ට𝜆

𝜎ଶൗ ቇ (18) 

where 𝛤(. , . ) defines the incomplete gamma function and 𝑄ெ/ଶ(. , . ) is the standard Gaussian Marcum Q-function 
given by: 

𝑄(𝑎) =
ଵ

√ଶగ
∫ 𝑒𝑥𝑝 ቀ

ି௧

ଶ
ቁ

ஶ

௔
𝑑𝑡 (19) 

We assumed that the channel between the SU and the PU follows the Rayleigh distribution in the VANET 
environment. Therefore, the signal to noise ratio (SNR) µ complies with the exponential PDF of the Rayleigh 
channel fading [32]: 

𝑓(𝜇௜) =
ଵ

ఓഥ
𝑒

ି
ഋ೔
ഋഥ  , 𝜇 ≥ 0  (20) 

where �̅� is the average SNR of the primary signal detected by the vehicle during the sensing interval.  Making use of 
the integration of the Q-function, the average probability of detection defined in Eq. 18, can be averaged over Eq. 20 
to give [31]: 
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൩  (21) 

Note that the 𝑃௙ in Eq. 17 is not affected by Rayleigh fading because it is independent of the SNR transmitted by the 
PU, thus it remains unchanged. 

The Q-function and Rayleigh function are already defined in MATLAB simulator. The rest of the simulation 
parameters are given in the following table: 

Table 1: Simulation parameters 
Parameter name Value 

Number of samples (M) 250, 500, 1000 
SNR -20dB-0dB 

Sensing Interval  50 µs 
Sigma (𝜎) 1 
Mobility freeway mobility model 

The detection probability is compared with the threshold for the number of samples in consideration. Fig. 3 helps in 
determining the optimal SNR given different sensing sample size. 

 

Fig. 3: Probability of detection verse SNR 

The goal of Fig. 3 is to determine the optimal SNR that yields the maximum detection probability for the energy 
detector. As shown in Fig. 3, the energy detector performs poorly in low SNR. For instance, when the SNR is less 
that -16dB, it is hard for the SU to determine whether the PU is present or absent because the probability of 
detection is very low. On the other hand, an increment in the number of samples to sense over time increases the 
detection probability. Cooperative decision can be used in low SNR to accurately identify the PU signal. Vehicles 
use spatial and diversity gain to overcome shadowing and multipath fading. 

4.1 Performance of SVM Kernel Functions 

The performance of SVM is evaluated using MATLAB. Before online classification, the RSU goes through training 
phase to correctly categorize subsequent test energy levels into the correct group (i.e., for the presence of PU (𝑌 =
 1) and PU absence (𝑌 =  −1) as in Eq. 6). The training is done offline, hence it can be performed by RSU at 
regular intervals without affecting the performance of decision making. Different training samples were obtained 
from the vehicles’ energy test level used in training the RSU. The table below presents the time to train and classify 
each kernel with training samples (N=100, 200, 500) as well as the accuracy of classification. 
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Table 2: SVM Kernel training, classification time in seconds and classification accuracy  
 

 TRAINING 
SAMPLE SIZE 

LINEAR-
SVM 

POLYNOMIAL-
SVM 

RBF-SVM 

 
Kernel Training 
Time (Seconds) 

100 0.215 0.204 0.091 
200 0.632 0.204 0.201 
500 10.072 9.901 1.683 

Kernel 
Classification 
Time (Seconds) 

100 1.21E-6 1.37E-6 7.29E-6 
200 2.37E-6 1.10E-6 5.11E-6 
500 6.87E-6 1.19E-5 3.93E-5 

Classification 
Accuracy (%) 

 
500 

 
81.90 

 
84.36 

 
91.25 

 

The RBF kernel follows a Gaussian distribution and performs better than linear and polynomial kernels. This is 
because the spectrum sensing in energy detection follows the Gaussian distribution and the samples are not linearly 
separated as suggested in Section 3. In Fig. 4, the performance of each kernel is evaluated on the ROC curves. 

 

Fig. 4: Kernel function detection performance under ROC 

In Fig. 4, RBF outperforms other kernels in terms of probability of detection. However, the classification time for 
RBF is poor as compared to the other kernels as noted in Table II. For instance, it takes 6.87E-6 seconds to classify 
500 training samples with linear kernel, on the other hand, it takes 3.93E-5 seconds to classify the same samples. 
However, the classification time is negligible compared to the sensing interval of 50µs. Hence, the effect on 
spectrum sensing and transmission time is minimal (see Section 3.2). In Fig. 5, the simulation was conducted to 
evaluate the performance of each kernel with an increasing number of vehicles participating in the sensing. The 
SNR is set to -8dB.  
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Fig. 5: Detection probability with different number of vehicles 

The RBF kernel performs better than linear and polynomial kernels as seen from the figure above. With 10 vehicles 
participating in the cooperative decision, the detection probability is about 62% compared to 55% and 41% for 
polynomial and linear kernels respectively.  Nevertheless, with an increasing number of vehicles participating in 
sensing, all kernel functions performance improves. In Fig. 6 and 7, we compare the performance of SVM based 
model to hard fusion rule from literature [33] [17] [34]. In the hard combining scheme, each vehicle senses the 
channel of interest and sends the binary output to the RSU. The binary outputs are 1 (indicating presence of the PU) 
and 0 (denoting absence of the PU). The RSU decides on spectrum occupancy using K-out-of-M rule where decide 
1 if K out of M vehicles sent 1 as their output. 

 

Fig. 6: ROC for SVM and hard fusion rule 

The simulation results presented in Fig. 6 for ROC shows that RBF and polynomial kernel based SVM cooperative 
decision methods perform better than hard fusion and linear SVM. Hard fusion requires the participating vehicles to 
send only a bit to the RSU. On the other hand, SVM requires the vehicle to send the energy statistic level and the 
label for correct categorization. In addition, training the SVM increases its performance which is lacked in hard 
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fusion rule. Nevertheless, hard fusion rule performs better than SVM model based on the linear kernel. More 
simulation results which compare the performance of SVM and hard fusion rule are presented in Fig. 7. 

 

Fig. 7: Comparison of SVM and hard fusion rule 

As shown in Fig. 7, the hard fusion rule scheme performs below the RBF and Polynomial SVM based techniques. 
For instance, it takes 45 vehicles when using RBF to reach the detection probability of 90% while the hard fusion 
requires 60 vehicles for the same SNR = -10dB. Furthermore, all the SVM kernels perform better with the increased 
number of vehicles to reach a desired detection probability compared to hard fusion rule method. For example, in 
Fig. 7, all the kernel based sensing reach at least 99% detection probability for 90 vehicles when using SNR=-10 
while the hard fusion detection probability is at 95%. The implication is that the SVM based decision at RSU 
performed better than hard fusion rule approach. One of the shortcomings of SVM based approach is that it requires 
training before sensing can be performed online. In addition, online detection is associated with the particular 
channels which the model is trained on. Nevertheless, as more data is collected on many channels, the sensing 
performance for many channels can be achieved and improved upon to cover more channels in the learning process. 

5.0 CONCLUSION 

In this paper, we have shown that cooperative spectrum decision based on support vector machine performs better 
than hard fusion rule decision at RSU. Simulation results indicate that RBF outperforms linear and polynomial 
kernels. In general, however, the proposed SVM based sensing performs better than hard fusion combining rule 
approach in low SNR in terms of detection probability. For example, RBF SVM based approach reach the 
probability of detection of 75% while hard fusion rule is about 60% with 20 vehicles participating in the cooperative 
decision. With an increase in the number of vehicles the probability of decision also increases but at different rates.  
In dynamic spectrum access, spectrum sensing is one of the most important stages. Accurate identification of free 
licensed channel will reduce interference to primary systems. In addition, accurate sensing results will enable 
optimal use of free licensed channels whenever they are free. Therefore, the results obtained in this paper show that 
support vector machine based decision making can play an important role in identifying free spectrum from licensed 
frequency bands along the roads. In the future, we will investigate other machine learning techniques and their 
influence on detecting the PU signal. Furthermore, we will also study other PU activity model and their effect on 
sensing performance in CVN environment. 
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