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ABSTRACT 
 
Minimizing cargo handling time and waiting time of ship are some of the most critical tasks for terminal operators 
during berth allocation planning.  An efficient and effective berth allocation planning approach is not only 
significant for improving a terminal’s productivity but worth even more in enhancing terminal serviceability.  As 
berths are no longer leased by specific ship lines or ship companies in the majority of terminals, ships of various 
sizes and various cargo handling volume at a particular terminal of call are competing for the same berth for 
handling.  As a result, there are always concerns from both terminal operators and ship companies regarding the 
service priority.  This research contributes to deal with the dilemma terminal operators encountered in balancing 
service priority and terminal productivity maximization during berth allocation.  This research deals with berth 
allocation problem which treats calling ships at various service priorities with physical constraints.  The problem 
encountered is to determine how to cope with various ships with various attributes in the system, and the objective is 
to minimize the total service time of a set of given calling ships through proper berth allocation.  This research 
adopts a chaotic genetic algorithm-based method to deal with the problem.  The new formulation and method have 
been proposed and results obtained have been compared with the existing one in literature.  The results show the 
improved feasibility of the proposed formulation and improved convergence speed of the proposed method over the 
existing one.  Also, higher terminal serviceability is indicated. 
 
Keywords: Chaotic Genetic Algorithms (CGA), berth allocation, service priority, terminal serviceability. 
 
 
1.0 INTRODUCTION  
 
Prior to a ship’s arrival at the terminal, particular quay space or a berth has to be allocated to it with considerations 
to the issues involved such as the estimated arrival time of the ship, physical relationship between the berth and the 
ship as well as service priority.  Berth allocation plays an important role in determining the terminal productivity as 
the handling time for a specific ship is not necessarily the same at every berth.  Concurrently, utilization of costly 
terminal infrastructure determined by berth allocation planning plays an important role in enhancing terminal 
serviceability.  The serviceability of a berth is considered as a degree to which the servicing of a ship can be 
accomplished with given resources and within a specified timeframe.  A good berth allocation scheme can help to 
minimize the total service time of all ships and thus enable the terminal to serve more ships.  Consequently, the 
number of containers being handled is increased so as to increase terminal profits. 
 
The berth allocation problem (BAP) consists of 2 components, which are the assignment of quay space and the 
assignment of service time (or service order) to calling ships [1].  When combined, the berth allocation helps to 
assign and schedule incoming ships to berth for cargo handling.  The assignment of quay space to calling ships 
refers to the allocation of ships to the proper quay locations based on the berth since the entire quay is usually 
partitioned into several berths for managerial purposes.  Ships of various sizes arrive at the terminal at the different 
time and bearing different container handling volume.  The highly dynamic environment and diverse ship’s attribute 
make it difficult for terminal operators to assign ships to berths in a balanced way.  There are numerous ways to 
assign ships to berths as illustrated in Fig. 1.  As shown in the graph, there will be 24 (4!) possible combinations 
even it is a simplified case with 4 calling ships and 4 berths only. 
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Fig. 1: Assignment of quay space to calling ships 
 
Other than the assignments of quay space to calling ships, the assignments of service time (or service order) to 
calling ships is another indispensable component of berth allocation.  As there is no longer berth leased by specific 
ship lines or shipping companies in the majority of terminals, ships of various sizes and various cargo handling 
volumes at a particular terminal of call are competing for the same berth, as demonstrated in Fig. 2.  As a result, 
there are always concerns from both terminal operators and shipping companies regarding the service order and 
service priority. 
 

 
 

Fig. 2: Assignment of service time (or service order) to calling ships 
 
This research describes an adoption of Chaotic Genetic Algorithm (CGA)-based method in solving the Berth 
Allocation Problem with Priority Consideration (PBAP).  Berth allocation is one of the major operative planning 
modules which is not only closely related to the efficiency of cargo handling but also able to become a competitive 
advantage of terminals [2, 3] or even considered as the fundamentals part of terminal operations [4-6].  This research 
is also motivated by the desire of terminal operators for enhanced terminal serviceability through optimally 
assigning and scheduling ships to berth, taking into account the dilemma they encountered in balancing service 
priorities and terminal productivity maximization during berth allocation.  Although there are existing formulations 
for PBAP in literature, it considers no physical constraints, and thus, lowerings its applicability. 
 
This research addresses the PBAP and focuses on developing an optimal solution to deal with it.  This research takes 
into account ships that have already arrived as well as those that have not arrived at the time of planning but will 
arrive at some moment during the planning phase.  The aim of this research is to improve the existing formulation of 
PBAP and develop a feasible CGA-based method for PBAP.  The proposed formulation and method are compared 
with literature in order to examine how to differ in solution quality.  The proposed formulation and method are 
developed for the sake of terminal serviceability maximization, and ultimately maximizing a berth’s profitability. 
 
The paper is divided into the following sections.  Section 2 is a brief review of the background and previous work.  
Section 3 presents the proposed formulation of PBAP with physical constraints.  Section 4 presents the use of CGA-
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based method in solving the proposed PBAP formulation.  Section 5 reports the results of experimental simulations 
in solving the proposed formulation and compares the performance between formulations and methods in literature 
and the proposed one, and Section 6 is the conclusion. 
 
2.0 BACKGROUND AND PREVIOUS WORK 
 
As global trade increases, further and a substantial increase in the use of containers for maritime transportation has 
been predicted.  These give rise to the interest of container terminal logistics in literature.  Many papers have been 
published dealing with issues concerning container shipping industry such as planning, scheduling, operation, and 
management issues [7-14].  Generally, container terminal operations start when the calling ships arrive at the 
terminal with pre-known arrival time and they will then be assigned to a berth at particular quay location at 
particular sequence according to the berthing plan.  After being assigned to the berth, containers will be discharged 
with the help of quay cranes (QC), and the discharged containers will be transported by internal trucks (IT) to the 
planned location of the yard for stacking and temporary storage [8, 12, 15].  
 
Berth allocation refers to the assignment of berths and service time (or service order) to incoming ships for cargo 
handling before their arrival [1, 16-21].  Berth allocation needs to take into consideration the arrival time of ships, 
physical constraints (such as ship length and berth length).  Berth allocation plays an important role in determining 
the terminal productivity as the length of waiting time that calling ships to wait for an idle berth and handling time 
for a specific ship may depend on the berth to be handled [17, 20, 22-24].  A good berth allocation scheme can be 
measured in terms of cost saving [25], total waiting time minimization, total handling time minimization or even 
total service time minimization [7, 22, 26, 27]. 
 
2.1 Service Priority Consideration 
 
As berths are no longer leased by specific ship lines or ship companies in the majority of terminals, ships of various 
sizes and various cargo handling volumes at a particular terminal of call are competing for the same berth for 
handling.  As a result, there are always concerns from both terminal operators and ship companies regarding the 
service priority [5, 6].  While scheduling ships to quay location (or particularly to berth), only several works on BAP 
are extended with service priority[21].  Before the introduction of the concept of priority, the previous researches 
have dealt with the assignment of service time to ships using a wide variety of ways.  One of the earliest papers that 
explicitly dealt with service order was written by Lai and Shih [28].  Motivated by the requirement of more efficient 
berth usage at the Hong Kong International Terminals Limited (HIT), they proposed heuristic algorithms for BAP.  
In their paper, the ‘First-Come-First-Serve (FCFS)’ scheduling strategy was assumed [28].  Later on, Imai et al. also 
studied the BAP at commercial terminals, where most service queues were traditionally processed on a FCFS basis 
[29].  They concluded the work with an important idea that the optimal berth allocation should not consider the 
FCFS heuristic for high terminal throughput and efficiency.  On the other hand, they were also aware of the possible 
dissatisfaction resulted among shipping companies concerning the service order.  
 
To cope with the problem associated with dissatisfaction regarding service order, as well as to balance it with 
terminal productivity, a few researchers have tackled BAP with priority consideration [19, 22, 24].  Even though 
service priority has been incorporated in BAP in a few studies, there are still arguments for the choice of priority.  
At the same time, terminal operators have different preferences regarding the service priority.  For example, it was 
reported that most of the Japanese terminals preferred ships with larger container volume being served first while 
ships with smaller container volume were favored in Dalian container terminal of China [5, 6, 22, 30-32] Ursavas 
[32] extended the work of BAP on priority considerations by proposing a decision support system for determining 
priority controls based on simulation optimization. 
  
Generally, service priority can be divided into two groups, which are hard priority and soft priority.  Hard priorities 
refer to those priorities explicitly assigned to the calling ships.  Examples of hard priorities include First-Come-
First-Served (arrival time-based) and ships with higher handling volume first (cargo handling volume-based) [5, 6, 
22, 30, 31].  The term ‘soft priority’ appeared first in 2003 that researchers defined soft priority as the priorities 
associated with ships which are not explicitly defined in problem formulation; instead, the priorities are being 
evaluated based on the resultant objective function value [22]. 
 
Berth allocation that takes priority consideration into account is of high value to terminal operators to enhance 
terminal serviceability.  It is not a must to give priorities to ships in the formulation explicitly for ship differentiation 
since the choice of priorities should be terminal-dependent and scenario-oriented.  As a result, those BAP 
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approaches with hard priorities in literature have limited usage.  This gives rise to the argument that win-win 
situations for shipping companies and container terminals are more likely to be achieved when BAP is solved with 
soft priorities consideration.  However, to the best of our knowledge, only three studies have solved BAP with soft 
priorities.  Imai et al., in their work presented several arguments and examples for differentiating the service order of 
ships ‘ [22].  This was the first paper dealing with soft priorities, where ships were associated with differentiated 
weight.  Realizing the need of satisfying both ship companies and terminal operators [22], another research team has 
considered the BAP as a multi-objective optimization problem to concurrently minimize the makespan of the 
terminal, the waiting time of ships and deviation from a predetermined berthing schedule [19].  The formulation was 
suggested to allow flexibility of terminal operators in assigning service priority to ships, and also flexibility in 
scheduling ships to berth.  The latest study which incorporated soft priority into consideration was conducted by 
Lalla-Ruiz et al. [24].  In their paper, they addressed the PBAP under time-dependent limitations by considering a 
multi-period planning horizon, formulating an alternative mathematical model and proposing an optimization model. 
 
Despite the documented importance of dealing with the dilemma in balancing service priorities and terminal 
productivity maximization during berth allocation, a limited number of studies have considered service priority.  
Although there exist formulations for PBAP in literature, the majority of them considered only the hard priorities 
explicitly assigned to the calling ships and caused dissatisfaction to ship companies and failed to balance service 
order with terminal productivity.  To our knowledge, only three existing studies have considered soft priorities; 
however, they considered no physical constraints and lowered their applicability.  Addressing insufficient research 
works taking soft priority into account during berth allocation, and the limitation of the existing formulations of 
PBAP, the existing dynamic formulation with soft priorities is proposed in this research to take additional physical 
constraints into account as the evaluation criteria to ensure the formulation to be applicable while serviceable to 
terminals. 
 
2.2 Existing Approaches for BAP and PBAP 
 
BAP has been widely studied by researchers [25].  There are a lot of approaches used for dealing with BAP and 
PBAP.  BAP is widely known as NP-hard [1, 5, 6, 22, 33].  Zhen et al. [1] stated in his paper that “the deterministic 
BAP is NP-hard”.  Indeed, not only the deterministic BAP has been proven to be “non-deterministic polynomial-
time hard (NP-hard)”, it has been proven and stated by many researchers that BAP is NP-hard [5, 6, 22, 33].  
Although examination and proof of NP-hard problems are beyond the scope of this research, it is believed that the 
BAP is NP-hard as mentioned and concluded by the previous researches. 
 
Being a NP-hard problem, there will be no efficient exact algorithm for the problem using any existing way, and 
heavy computational burden is required to solve the problem, especially for realistic large-scale problem [27].  
Therefore, it is a common practice to obtain near-optimal solution for NP-hard problems using evolutionary methods 
or heuristics [22, 26, 27, 34, 35].   
 
Park and Kim [34] solved the BAP with crane assignment using Lagrangean relaxation based heuristic and dynamic 
programming.  Cheong and Tan [36] examined the BAP in multi-user terminals (MUTs) with the objectives of 
minimizing total service time of ships and total delay time in ship departure simultaneously.  To solve such a multi-
objective optimization problem, they have presented and applied a Multi-objective Multi-colony Ant Algorithm 
(MOMCAA).  Golias [37] and Karafa et al. [35] formulated the BAP as a bi-objective mixed integer programming 
problem to minimize the total service time of all calling ships while minimizing the derivation of the berth schedule.  
Golias [37] solved the problem with a combination of an exact algorithm, a GA-based heuristic and a Monte Carlo 
simulation.  Karafa et al. [35] solved the BAP with stochastic ship handling time with a combination of an 
evolutionary algorithm-based heuristic and a simulation-based Pareto front-pruning heuristic.  Lalla-Ruiz et al. [38] 
addressed the discrete case of the BAP with dynamic ship arrival time, and proposed a hybrid metaheuristic that 
combines Tabu Search with Path Relinking.  Lin et al. [27] studied BAP with dynamic ship arrival time.  They 
aimed to minimize the total service time of all calling ships by using an iterated greedy algorithm.  Tsai et al. [39] 
solved the BAP for a public berth with the objective of minimizing the total waiting time of calling ships using a 
wharf-based GA.    
 
Among the existing algorithms, modern heuristics based on artificial intelligence (AI) techniques such as GA are 
widely employed to approximately optimize the solution.  GA is getting more popular among and recognized by 
researchers that it is suitable and relatively efficient when dealing with NP-hard problems.  According to Lau and 
Zhao [40], “although GA is a heuristic method and cannot guarantee optimal solutions in general, it is relatively 
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efficient in solving NP-hard problems”.  Theofanis et al. [41] stated in their paper that “genetic algorithm based 
heuristics are very popular as a BAP solution approach”.   
 
Regarding the only three existing studies considering soft priority we have identified, Imai et al. [22] have tried to 
obtain a Lagrangian relaxation formulation of the PBAP; however, the PBAP has become a “quadratic assignment 
problem” (QAP) which is still an NP-hard problem.  They have therefore employed a Genetic Algorithm (GA)-
based heuristic to facilitate the solution procedures.  Cheong et al. [19] have utilized and integrated local search 
heuristic, a hybrid solution decoding scheme, and an optimal berth insertion procedure as a multi-objective 
evolutionary algorithm (MOEA) to solve the multi-objective PBAP.  Addressing the BAP under time-dependent 
limitations, the latest study which incorporated soft priority into consideration, Lalla-Ruiz et al. [24] proposed an 
alternative mathematical model and solved it using a Generalized Set-Partitioning Approach. 
 
To solve the difficulties and NP-hard PBAP within short computational time while maintaining the quality of 
solution obtained, GA-based method is a reasonable approach.  Also, this research is primarily based on the study of 
Imai et al. [22], which employed GA as well.  Furthermore, several studies have successfully applied CGA-based 
methods for overcoming the problems of premature convergence and the slow reaching of global optimum in 
optimization problems and scheduling problems.  Yuan et al. [42] developed a hybrid CGA for the short-term hydro 
system scheduling problem with convergence speed increased and premature overcame.  Hong et al. [43] addressed 
the tourism demand forecasting problem by presenting a support vector regression (SVR) model with a CGA.  Their 
proposed CGA was proved to be effective in overcoming premature local optimum during genetic parameters 
determination.  The work by Hong et al. [44] presented a CGA for solving the SVR-based electric load forecasting 
problem.  The numerical example showed that this algorithm improved the premature convergence of GA.  In this 
regard, we proposed a CGA-based method for addressing the PBAP, which is believed to be able to obtain optimal 
solutions by increasing convergence speed and overcoming premature local optimum. 
 
2.3 Existing Problem Formulation of PBAP 
 
In this section, the assumptions, notations, objective function and problem constraints of the existing formulation are 
summarized.  The assumptions included can be found in Table 1. 
 

Table 1: Assumptions of the problem [22] 
 

It is a multi-user terminal (MUT) 
The only long wharf is virtually divided into several berths 
The assignment of ships to quay space is based on berths 
Each berth can serve up to 1 ship at any time despite the size, especially ship length, of the ship 
There are no physical constraints 
Ship arrival has dynamic nature 
Ships are banned from moving until their departure 

 
A PBAP as shown in Fig. 3 is to be studied.  The problem consists of (J) berth, and a set of calling ships, indexing 
from V1 to VI.  The notations used to describe the problem studied can be found in Table 2. 
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Fig. 3: BAP model with J discrete berths and I ships 
 

Table 2: Notations of the problem [22] 
 

Notations of problems - General parameters 

Notation Meaning 

i Index for calling ships, i=(1,......,I) ∈V the set of calling ships 
j Index for berth, j=(1,......,J)∈B the set of berths 

k Index for service orders, k=(1,......,I) ∈T the set of service orders 

m Index for calling ships, m=(1,......,I) ∈Qk the subset of T such that Qk={q|q<k∈T } 

Ci Container handling volume of ship i 

Ai Arrival time of calling ships i  

Pj Time when berth j becomes idle for the planning horizon 

Si Subset of ships with Ai ≥ Pj 

Hi  Handling time of calling ship i 

wi Weight for ship i  

Notations of problems - Decision variables 

Notation Meaning 

xijk Set to 1 if ship i is handled as the k th ship at berth j; 0 otherwise 

Notations of problems - Variable 

Notation Meaning 

yijk 
Idle time of berth j between arrival of the k th ship and departure of the (k-1)th ship 
when ship i is handled as the k th ship at berth j  

 
The objective is to minimize the total service time, which is the sum of handling time and waiting time, of all calling 
ships.  The decision variable is xijk.  With the solution of xijk, the total service time can be calculated.  The objective 
function is shown in Equation (1).  The problem constraints stated in the current problem formulation can be found 
in Table 3. 
 
 
 
 
 
 
Objective: MIN 
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(1) 

 
Where 

  (2) 

  (3) 
 

Table 3: Problem constraints 
 

 
 (4) 

 
 (5) 

 
 (6) 

 
Considering a ship being served, the total service time of any particular berth is the sum of 1) ship handling time, 
and 2) the product of the length of potential service queue following the ship and the handling time.  The first term 
of the objective function (1) is the total service time of ships weighted by priority wi without considering time gap 
between two adjoining ships in case of berth idling that results from the late arrival of the ship.  The second term 
takes the time gap into consideration.  Constraint set (4) ensures that each of the calling ships must be served at one 
of the berths in any service order.  Constraint set (5) ensures that no more than 1 ship can be served by the same 
berth at the same time.  Constraint set (6) ensures that ship can only be served after its arrival. 
 
3.0 PROPOSED FORMULATION OF PBAP WITH PHYSICAL CONSTRAINT 
 
In this section, physical constraints are incorporated into the existing formulation of PBAP which has been 
mentioned in the previous section.  A new formulation of PBAP with physical constraints will be given and 
discussed in detail in order to deal with calling ships with various ship lengths and berths with various berth lengths. 
 
There are arguments for the previous work in the formulation of PBAP which treats ships without physical 
constraints concerning its feasibility and applicability to be applied in the real-world situation.  Therefore, for the 
modified model which takes into consideration the relationship between ship length and berth length, some of the 
assumptions made for the PBAP without physical constraints have to be modified.  The updated assumptions are 
summarized in Table 4, where those additional assumptions take into account and enforce the physical constraints 
relating to berth length and ship length and can be found in literature which took physical constraints into account 
[16, 45]. 
 

Table 4: Modifications to assumptions 
 

Assumptions abolished Assumptions added 

Each berth can serve up to 1 ship at any time despite 
the size, especially ship length, of the ship 

Inter-ship clearance distance is included in the ship 
length when two ships are assigned to adjacent berths 

There are no physical constraints 
There is a physical constraint restricting the maximum 
ship length each berth can serve 

 
Each calling ship can be served by any of the suitable 
berths which can physically accommodate it with the 
same handling time (H i) 

 
There is a set of own attributes for each calling ship, such as ship length (L), arrival time (A) and cargo handling 
volume (C), and there is also a set of own attributes for each berth, and especially berth length (R).  The notations 
added to describe the problem studied under the proposed formulation can be found in Table 5. 
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Table 5: Notations of problems – General parameters 
 

Notation Meaning 

Rj Berth length of berth j 

Li Ship length of ship i 
 
It is recalled that the weight for ship i (wi ) is a softly defined-priority assigned to ship i.  The weight is evaluated by 
the resultant weighted service time for each calling ship.  It is designed in a way that any type of weight, such as a 
function of ship’s cargo handling volume, can be added to individual calling ships to differentiate their priorities.  
The formulation of PBAP is subject to the additional constraint (7): 
 

  (7) 

 
Constraint set (7) is added to the original formulation to ensure that all ships must be berthed within the berth length 
where it is assigned to.  Similar constraint which ensures ships must be handled at berths with acceptable physical 
conditions can be found in the existing literature [16, 20, 46, 47]. 
 
The same objective, i.e., minimization of total service time of all calling ships, is used for PBAP with physical 
constraints.  The minimization of total service time enables terminal operators to serve more ships and handle more 
cargos and yield higher serviceability.  Also, as far as satisfaction of shipping companies can be maximized when 
total service time is minimized, the maximized satisfaction will encourage an establishment of a long-term 
relationship between terminal operators and shipping companies, which in other words maximize terminal 
serviceability in the long term.  Moreover, total service time is used as the evaluation criteria for terminal 
productivity in the literature [22].  All these support the usage of total service time as the evaluation criteria for 
terminal serviceability in this research.  It is reminded that binary value is used as the decision variable in this 
research for both formulations with and without physical constraints rather than using the actual unit time for 
indexing berthing sequences.  It is to avoid handling incredibly a huge amount of decision variables while ensuring 
consecutive service for calling ships.  Similar usage of binary value as the decision variable can be found in the 
previous work [5, 6, 22, 48]. 
 
4.0 ADOPTION OF CHAOTIC GA-BASED METHOD 
 
The size of population in the CGA-based method is set to 30, which is the same as the setting in the literature [22]. 
 
4.1 Encoding of Chromosome 
 
The chromosomes are represented as character strings to work with scheduling order of ship-to-berth assignment 
instead of directly with berthing times.  The chromosomes consist of (I+J-1) genes.  The service queue of each berth 
is separated with zero, and the scheduling order is arranged from the highest on the left to the lowest on the right.  
An example of a chromosome encoding for a three-berth thirteen-ship PBAP is shown in Fig. 4.  In the example, the 
chromosome consists of 15 (13+3-1) genes.  Ships 1, 3 and 5 are assigned to berth 1 and ship 1 is scheduled at berth 
1 before ships 3 and 5. 
 

 
 

Fig. 4: Chromosome representation 
 
 
4.2 Chaotic Initialization 
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In order to improve the whole performance in the global search, the notion of chaos into the initialization and the 
mutation process is introduced.  Since it gives the uniform distribution function in the interval [0.0:1.0], the tent map 
shows outstanding advantages and higher iterative speed than the logistic map [49].  In this research, the tent map is 
used to generate chaos variables.  The tent map is defined by: 
 

  (8) 
 
where  is the bifurcation parameter.  Specifically, when μ=1, the tent map exhibits entirely chaotic dynamics 
and ergodicity in the interval [0.0:1.0].  Firstly, we give a brief review of the traditional process of chaotic 
initialization: 
 
Using the tent map（μ=1）to generate the chaos variables and rewriting Equation (8), gives: 
 

  (9) 

 
where zβ denotes the βth chaos variable, and α denotes the chaos iteration number.  Set α=0 and generate D chaos 
variables by Equation (9).  After that, let α=1, 2,…, 𝛾 in turn and generate the initial population.  Then, the above 

chaos variable  , will be mapped into the search range of the decision variable: 
 

  (10) 

 
 
 
 
Defining: 
 

  (11) 

 
and then, the chaos initialized population can be obtained. 
 
In our proposed CGA-based method, each chromosome consists of (I+J-1) genes, which include I indexes of the 
ships and (J-1) zeros.  For this case, the scheme of Chaotic Selection is proposed, which includes the following steps: 
 Firstly, store the (I+J-1) items (I indexes of the ships and (J-1) zeros) in a matrix. 
 Then, generate one chaos variable z by Equation (9). 
 Map the chaos variable into the range of the decision variable, which is [1, I+J-1] in our case, and get the 

variable 𝜑 by Equation (10). 
 At last, get the round value of 𝜑, use it as the index to get the corresponding value in the previous matrix in 

the first step, and complete the Chaotic Selection for once. 
 
Using the above Chaotic Selection scheme, the chaotic initialization in this research can be described as follows: For 
each chromosome, fill in the genes from 1 to (I+J-1) one by one.  For each gene, do the Chaotic Selection once and 
generate one round number ranging in [1, I+J-1], then use the number as index and get the corresponding value from 
the matrix that stores the ships’ indexes and zeros, and at last, assign the value to the corresponding gene and then 
go to the next one until the end.  For each gene, if the ship’s index exists in the same chromosome, or if its adjacent 
gene is also a ‘zero’, then, the Chaotic Selection will be repeated until getting a suitable value.  By repeating the 
above steps for all the N chromosomes (N is the population size), the whole chaotic initialized population is 
generated. 
 
4.3 Validation on Individual’s Feasibility and Evaluation 
 
In a chromosome, ships cannot always be served at the assigned berth due to the physical constraints.  It is important 
to notice that there will be validation to check the feasibility of every individual chromosome in the initial 
population and after every genetic operation using the constraints described and discussed in Section 3.  If it is a 
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feasible chromosome, it will be kept in the pool; otherwise, it will be repaired through the chromosome repair 
operations described in the corresponding section of genetic operation.   
 
The performance of individual chromosome is evaluated by the value of the objective function in the mathematical 
model described in Section 2.3.  The PBAP is a minimization problem.  Imai et al. [22] conducted tests with the 
functions and found sigmoid function to be better in evaluating PBAP which can avoid “extremely good fitness 
value among solutions obtained where there is no significant difference between them in the objective function 
value”.  The fitness function of PBAP is defined by Equation (12) as follows: 
 

 
 (12) 

 
4.4 Formation of Mating Pool 
 
As usual, the number of chromosomes in the mating pool is the same as that in the initial population.  The 
chromosomes are selected by the Chaotic Selection scheme, which is similar as in Section 4.2, just changing the 
decision range into [1, N], where N is the population size and the corresponding decision variable is the 
chromosome’s index.  To preserve the best chromosome(s), the elitist strategy, which is one of the most common 
strategies used for mating pool formation, is adopted in this research.  In the mating pool, the chromosome having 
the lowest fitness value will be replaced by the stored best chromosome, which means the one with the highest 
fitness value, found so far during evolution. 
 
4.5 Crossover Operation 
 
Crossover is performed to introduce new chromosomes by exchanging genes of the current chromosome (i.e., parent 
chromosome) in the mating pool.  In each pair of mating chromosomes, a pre-defined number of genes will be 
selected using the Chaotic Selection scheme (explained in Section 4.2), except for gene with gene value ‘0’, 
according to the crossover probability, or the so-called ‘crossover-rate’ (CR).  Theoretically, the number of genes 
undergo crossover is calculated as V*CR, where V is the number of calling ships need to be assigned under PBAP.  
For example, if the CR is 0.1, V is 10, and the crossover point is the one depicted in Fig. 5, the gene (10) from 
Parent B will replace the one in Parent A, and Offspring A inherits the remaining genes of Parent A.  To deal with 
the redundant or missing ship problem, which is infeasible solution in terms of constraints (4) and/or (5), 
chromosome repair will be performed and additional interchanges of genes might be required.  That is, the gene with 
the same ship ID with the crossover added-in one will be replaced by the missing ship ID, which is initially in the 
parent, while ensuring physical constraint is met.  For example, the gene (10) is a duplicate of the crossover added-
in gene (10) while gene (8) is missing.  Therefore, the duplicated gene (10) in Intermediate Offspring A will be 
replaced by the gene (8). 
 

 
 

Fig. 5: Sample of the crossover operation 
 
Note that the genes at the crossover point(s) will never change again as long as constraints, especially the physical 
constraints, are met.  Also, the gene with gene value ‘0’ will not be selected for crossover operation and the 
crossover point is determined by the composite of ‘crossover berth’ and ‘crossover order’ to avoid extreme changes 
in ship-to-berth assignment.  The example illustrated in Fig. 6 shows the destructive high level of chromosome 
disruption which can be avoided using the crossover mechanism mentioned above. 
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Fig. 6: Disruptive crossover mechanism avoided in this research 
 
Chromosome repair is also needed in case the infeasible solution is generated in terms of constraint (7).  In this 
research, if a ship cannot be served by the assigned berth due to physical constraints, it will be inserted at the end of 
the service queue of the next berth repeatedly until it is assigned to a berth which can physically accommodate it.  
For example, if ship 8 cannot be handled at berth 1 as shown in Fig. 7, chromosome repair will be performed, and it 
will be inserted into berth 2 as the last ship as shown in Fig. 8. 
 

 
 

Fig. 7: Example of crossover operation that needs chromosome repair 
 

 
 

Fig. 8: Sample of crossover operation with chromosome repair 
 

4.6 Mutation by Chaotic Re-Initialization 
 
Here, unlike Simple GA (SGA), in the proposed CGA-based method, the mutation process is not the same as the 
traditional mutation method of exchanging the ‘0, 1’ sequence, but by a chaotic re-initialization.  That is, when an 
individual is chosen to do the mutation, it is reinitialized by the chaotic initialization method, that is proposed in 
Section 4.2.  Similar to crossover, a pre-defined number of genes will be selected by the Chaotic Selection method 
according to the specified probability, or the so-called ‘mutation rate’ (MR), in mutation operation.  And this 
increases the diversity of the allocation of a ship to berth and the scheduling order. 
 
5.0 EXPERIMENTAL SIMULATIONS 
 
To demonstrate the difference in performance of the existing formulation in literature and the proposed one, 
computational analyses of the proposed PBAP using the proposed CGA-based method were conducted.  Cases used 
in the experiments were generated randomly but systematically primarily [22].  Statistics from other literature and 
real-world instance had also been used to provide reasonable and realistic data input for the numerical experiments 
[33, 50].   
 
The basic problem in which 25 calling ships with various ship lengths and container handling volumes are handled 
at a multi-user terminal (MUT) with 5 berths of different berth lengths was developed [22].  10 data sets of container 
handling volume were prepared for the calling ship set.  The containers handling volume followed a uniform 
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distribution, ranged between 50 Twenty-foot equivalent units (TEUs) and 1,000 TEUs [22], with a total handling 
volume of 11,092 TEUs [51].  The ships had different arrival time and were set to have an inter-arrival time between 
0 hour and 5 hours based on the distribution of ship arrival at Port of Colombo [33].  The handling time at any of the 
five berths was calculated by multiplying the average handling time per one container observed in the Port of Kobe 
(i.e., 2 minutes) and the handling volume [22].  The details of other parameters such as berth length [51], ship length 
[50], ship’s container handling volume and ship’s arrival time [33] are shown in Tables 6, 7 and 8, respectively.  
After all, 10 cases were calculated for the computational analyses.  The planning horizon (Pj) served the 25 calling 
ships is six days as for fair comparison with the one in literature [22].  The ship differentiating weight (wi) was set 
to 1 for all calling ships to obtain the minimal total service time for PBAP as concluded by Imai et al. [22] as well as 
to have clear while simplified discussion. 
 
The CGA-based method was then applied to solve the 10 cases independently for 10 times.  The solution procedure 
was coded in MatLab and was run on a PC with Intel Core i7-4790K CPU at 4GHz with 8GB RAM.  The 
computational time is about 1 second. 
 

Table 6: Parameters of the numerical example 
 

Berth ID Berth length (Rj) [51] 
Ships allowed to berth  
(due to physical constraints) 

1 and 2 300m Ship 1 to Ship 20 
3 and 4 320m Ship 1 to Ship 20 
5 350m Ship 1 to Ship 25 

 

Calling ship ID Ship length (Li) [50] 

V1 to V10 300 m 
V11 to V20 300 m 
V21 to V25 320 m 

 
 

Table 7: Ship’s container handling volume (TEUs) [22, 51] 
 

Calling 
Ship ID 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

V1 51 51 989 585 58 58 163 51 585 506 
V2 585 54 901 51 54 163 58 234 818 383 
V3 234 58 866 818 163 54 589 606 506 901 
V4 818 64 832 234 473 989 54 383 901 832 
V5 606 137 818 506 989 473 473 832 759 759 
V6 506 163 759 606 208 190 190 215 866 51 
V7 383 190 725 901 190 208 208 725 538 585 
V8 901 208 606 383 396 137 137 339 64 234 
V9 832 215 585 759 137 396 396 137 396 818 
V10 759 234 538 832 64 339 339 190 208 606 
V11 215 339 506 866 339 64 64 989 473 64 
V12 866 383 473 215 538 725 725 163 54 137 
V13 725 396 396 538 725 538 538 58 51 396 
V14 538 473 383 725 866 215 215 585 234 190 
V15 339 506 339 64 215 866 866 818 606 208 
V16 64 538 234 339 759 832 832 506 383 215 
V17 137 585 215 396 832 759 759 901 832 866 
V18 396 606 208 137 901 383 383 759 215 725 
V19 190 725 190 208 383 901 901 866 725 538 
V20 208 759 163 190 506 606 606 538 339 339 
V21 989 818 137 473 606 506 506 64 137 989 
V22 473 832 64 989 818 234 234 396 190 473 
V23 163 866 58 54 234 818 818 208 989 163 
V24 54 901 54 163 585 51 51 473 163 54 
V25 58 989 51 58 51 585 585 54 58 58 
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Table 8: Ship’s arrival time 

 

Calling Ship ID Inter-arrival time (hour) [33] Arrival time Ai (hour) Arrival time Ai (minute) 

V1 - 3.45 207 
V2 0.5 3.95 237 
V3 1 4.95 297 
V4 3.5 8.45 507 
V5 2.3 10.75 645 
V6 2.6 13.35 801 
V7 0.9 14.25 855 
V8 0.2 14.45 867 
V9 1.7 16.15 969 
V10 0.3 16.45 987 
V11 3 19.45 1,167 
V12 2.5 21.95 1,317 
V13 1.2 23.15 1,389 
V14 0.8 23.95 1,437 
V15 3.8 27.75 1,665 
V16 2.1 29.85 1,791 
V17 0.1 29.95 1,797 
V18 3.12 33.07 1,984.2 
V19 4.6 37.67 2,260.2 
V20 1.25 38.92 2,335.2 
V21 2.85 41.77 2,506.2 
V22 3.75 45.52 2,731.2 
V23 0.45 45.97 2,758.2 
V24 0.65 46.62 2,797.2 
V25 1.8 48.42 2,905.2 

 
5.1 Parameters Setting of CGA-based Method 
 
The population size is set as 30 as suggested by the literature [22] and for a fair comparison.  Reviewing the fitness 
values of solution changing with the generation, no noteworthy improvement in solution quality is observed after 
950 generations using SGA-based method while no noteworthy improvement in solution quality is observed after 
650 generations using our proposed CGA-based method.  A conservative value of 1,000 is hence chosen for the 
number of generations needed for convergence, and thereby as the termination condition. 
 
Regarding the crossover and mutation rates, since there is no strict guideline in literature regarding the values to be 
assigned, and it is reported that different combinations of values work better for different problems [52, 53], for the 
proposed formulation, different combinations of the crossover and mutation rates were applied to solve the 10 cases 
independently for 10 times to demonstrate the influence of different rates on the performance of genetic search in 
CGA-based method.  The range of the crossover rate is from 0.1 to 1.0 with 0.1 increases and the mutation rate from 
0.1 to 1.0 with 0.1 increases.  100 combinations in total were tested.  The minimum, average, and maximum total 
service time and fitness values obtained for the 10 cases with different crossover and mutation rates were recorded.  
The results show that the total service time and hence the fitness values obtained fluctuated vigorously in different 
combinations.  When solving the 10 cases, optimal solutions were obtained when crossover and mutation rates were 
0.7 and 0.4, respectively.  In point of experimental results, it can be concluded that the best results were obtained at 
the crossover rate of 0.7 and mutation rate of 0.4.  Although the crossover rate and mutation rate obtained seems 
quite large and may result in a high level of chromosome disruption which lowers the solution quality, the results 
can, in fact, be supported by the previous researches.  The previous papers also concluded that “a high level of string 
disruption is desirable in small populations” [53, 54].  The results obtained from sensitivity analysis should, 
therefore, be regarded as reasonable and suitable. 
 
5.2 Simulation Results 
 
The termination criteria, crossover rate and mutation rate were applied to solve the Case 1 independently for 10 
times and subsequently to solve the 10 cases independently so as to examine and compare how the two formulations 
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differ in performance in terms of the number of ships assigned to each berth and the number of successfully berthed 
ships.  Besides, the SGA-based method [22] and the CGA-based method were applied to solve the 10 cases so as to 
illustrate the effectiveness of our newly proposed CGA-based method. 
 
5.2.1 Number of Ships Assigned to Each Berth 
 
The numbers of ships assigned to each berth under the two formulations were plotted in Fig. 9 to Fig. 12.  Fig. 9 and 
Fig. 10 show the results that ships are more or less evenly distributed under the formulation proposed by Imai et al. 
[22] while ships are more congested for a particular berth (i.e., Berth 5 in this problem) under our proposed 
formulation (Fig. 11 and Fig. 12). 

 

 
 

Fig. 9: Number of ships assigned to each berth  
under formulation proposed by Imai et al. [22] (10 runs) 

 

 
 

Fig. 10: Number of ships assigned to each berth under 
formulation proposed by Imai et al. [22] (10 cases) 
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Fig. 11: Number of ships assigned to each berth  
under our proposed formulation (10 runs) 
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Fig. 12: Number of ships assigned to each berth  
under our proposed formulation (10 cases) 

 
The major difference between the two formulations is the presence of physical constraints.  The existing formulation 
assumes “each berth can service one ship at a time regardless of the ship’s size and there are no physical 
restrictions” [22], while in practice there are no berths with an infinitely large size which can physically 
accommodate any ship assigned to it.  Therefore, physical constraints must be taken into account when dealing with 
berth allocation as well as when considering total service time minimization in PBAP.  Due to the consideration of 
physical condition (actually berth length being considered) of berths in our proposed formulation, ships cannot be 
handled by any of the available berth despite the berth length.  Instead, ships can only be serviced at suitable berth(s) 
with sufficiently long berth length.  As berth 5 is the only berth which can physically accommodate any of the ship 
assigned to it, those ships which cannot be served at the originally-assigned berth will then be assigned to berth 5.  
As a result, much more ships are assigned to berth 5 than that to others.   
 
From the experimental results, it can be concluded that ships are assigned to berth considering only the total service 
time under the formulation in literature.  On the other hand, our proposed formulation has taken physical constraints 
into account when assigning and scheduling ships to berths.  Subsequently, the ships are assigned only to berth 
which can physically accommodate them.  Therefore, ships are more or less evenly distributed under the formulation 
proposed by Imai et al. [22] while ships are more congested at particular berth (i.e., Berth 5) due to physical 
constraints under our proposed formulation.  Also, it can be concluded that physical constraints have to be 
considered prior to minimizing the total service time and optimizing the PBAP. 
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5.2.2 Total Service Time 
 
To illustrate the effectiveness of our newly proposed CGA-based method, the SGA-based method [22] was also 
applied to solve the 10 PBAP cases.  The comparison results obtained regarding the total service time for the 10 
cases are shown in Fig. 13 to Fig. 22, respectively.  The results show that the proposed CGA-based method 
converges faster to the optima in most cases and can achieve shorter total service time than the SGA-based method 
in all the 10 cases, which fully illustrate the effectiveness of our newly proposed CGA-based method.  Also, the 
average total service time out of 30 runs for the 10 cases are obtained and reported in Table 9 and Fig. 23, which 
also reveal the strong power of our newly proposed CGA-based method in dealing with PBAP. 
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Fig. 13: Comparison between CGA and SGA-based 

methods for Case 1 
 

0 100 200 300 400 500 600 700 800 900 1000
2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54
x 10

5

Generation

T
o

ta
l s

e
rv

ic
e
 t
im

e 
(m

in
)

 

 

CGA

Simple GA

 
Fig. 15: Comparison between CGA and SGA-based 

methods for Case 3 
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Fig. 14: Comparison between CGA and SGA-based 

methods for Case 2 
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Fig. 16: Comparison between CGA and SGA-based 

methods for Case 4 
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Fig. 17: Comparison between CGA and SGA-based 
methods for Case 5 
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methods for Case 6 
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Fig. 19: Comparison between CGA and SGA-based 

methods for Case 7 
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Fig. 20: Comparison between CGA and SGA-based 

methods for Case 8 
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Fig. 21: Comparison between CGA and SGA-based 

methods for Case 9 
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Fig. 22: Comparison between CGA and SGA-based 

methods for Case 10 
 
Table 9: Comparison of average total service time between CGA and SGA-based methods for 10 cases 
 

Method 
Case 

1 2 3 4 5 

CGA-based (min) 2.3812E05 2.3700 E05 2.3566 E05 2.3606 E05 2.3632 E05 

SGA-based (min) 2.4116 E05 2.3880 E05 2.3642 E05 2.3917 E05 2.3906 E05 

Method 
Case 

6 7 8 9 10 

CGA-based (min) 2.3793 E05 2.3872 E05 2.3840 E05 2.3688 E05 2.3818 E05 

SGA-based (min) 2.3999 E05 2.4045 E05 2.4085 E05 2.3988 E05 2.3917 E05 
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Fig. 23: Comparison of average total service time between CGA and SGA-based methods for 10 cases 
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5.2.3 Number of Successfully Berthed Ships 
 
In this research, one of the objectives is to maximize terminal serviceability; therefore, it is of our interest to study 
how the two formulations perform regarding the number of successfully berthed ships.  Although the costs of 
handling one calling ship are not considered in this research, it is reasonable to believe that the more calling ships a 
terminal can service, the more cargos it can handle and the more cargo handling charges and profits it can enjoy.  
Also, it is reported that terminal operators always want to minimize the costs resulted from long total service time, 
such as the penalty costs resulting from delayed departures of ships [55, 56], the costs resulted from a late start of 
ship handling [34], the costs of low resources utilization [55], and the additional handling costs resulted from berth 
shift [34].  Therefore, a feasible formulation and an optimization method for berth allocation, which minimizes total 
service time while maximizes the number of successfully berthed ships, are suggested to be able to maximize 
terminal serviceability.   
 
When a ship is assigned to a berth which cannot physically accommodate it due to the physical relationship between 
berth length and ship length, it will be regarded as an unsuccessfully berthed ship; otherwise, it will be regarded as a 
successfully berthed ship.  The results regarding the number of successfully berthed ships under the two 
formulations are shown in Fig. 24 and Fig. 25.  The results show that all the ships are successfully berthed when 
adopting the CGA-based method in solving the proposed formulation; however, some of the ships are assigned to 
unsuitable berths and thus unsuccessfully berthed using the formulation in the literature [22]. 
 

 
 

Fig. 24: Comparison of the number of successfully  
berthed ships (10 runs)  

 
Fig. 25: Comparison of the number of successfully  

berthed ships (10 cases) 
Ideally, all the calling ships can be successfully berthed.  However, this is only possible if every berth has a 
sufficiently large size capable of serving any of the ships assigned to it regardless of their size.  Such a terminal 
layout, however, turns out to be very costly as there is a considerable redundant fleet when the calling ships are 
small in size.  Indeed, such a layout is rather unrealistic as the size of container ships varies with time, and it would 
be unpractical and impossible for terminal operators to expand the length of the berths whenever they desire. 
 
When the existing formulation is applied to solve PBAP, it is assumed that all the calling ships can be served [22]; 
however, it is just based on their neglect of physical condition of berths and thus the physical relationships between 
berth lengths and ship lengths.  Their formulation is, in fact, an infeasible one which cannot assign and schedule all 
the calling ships in line with what they presumed.  On the other hand, all the calling ships can be successfully 
berthed utilizing the proposed formulation as expected and effectively allocated utilizing the proposed CGA-based 
method.  Therefore, it is believed that physical constraints considerably impact the number of successfully berthed 
ships in PBAP as well as terminal serviceability.  An optimization approach for PBAP must take physical 
constraints into account in order to make it feasible.  The proposed formulation, which has taken the physical 
condition of a berth and thus the physical relationships between berth lengths and ship lengths into account, is 
therefore suggested to be capable of optimally assigning and scheduling calling ships to berths with the objective of 
minimizing total service time and make it outperformed the existing one. 
 
6.0 CONCLUSION  
 
There are always difficulties posed on berth allocation, such as the diversity of ship sizes and cargo handling 
volumes, and dilemma encountered by terminal operators in balancing service priorities and maximizing terminal 
productivity during berth allocation.  This research contributed to deal with the dilemma terminal operators 
encountered in balancing service priorities and terminal productivity maximization during berth allocation.  
Although there are existing formulations for PBAP in literature, the majority of them considered only the hard 
priority explicitly assigned to the calling ships and caused dissatisfaction to ship companies and failed to balance 
service order with terminal productivity.  To our knowledge, only three existing studies have considered a soft 
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priority; however, they considered no physical constraints and lowered their applicability.  Addressing the 
insufficient researches taking soft priority into account during berth allocation and the limitation of the existing 
formulations of PBAP, a feasible and more applicable formulation of PBAP using CGA-based method is proposed 
in this research.  The proposed formulation of PBAP with physical constraints is then modeled, applied to solve 10 
cases and compared with the existing formulation and SGA-based method.  Utilizing the proposed formulation and 
CGA-based method, terminal operators can have a better balance between service priorities and maximizing 
terminal productivity during berth allocation in an efficient and convenient way.  In addition, experimental results 
show that more calling ships can be served by the terminal with the proposed formulation and CGA-based method.  
Accordingly, the terminal revenue and serviceability can be enhanced.  Therefore, it is believed that the proposed 
formulation of PBAP and CGA-based method outperformed the existing one in literature.  The problem size is a 
major limitation of this research.  To enhance the reliability of the proposed PBAP with physical constraints and the 
adoption of CGA-based method in solving the problem, it is recommended to enlarge the problem sizes and study 
the limitation of problem sizes in a future study.  Also, it is suggested to consider more physical as well as technical 
constraints, such as availability of cranes, in future research to facilitate the applicability and feasibility of the 
proposed formulation and adopted the method, so as to provide a more holistic approach in dealing with PBAP. 
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