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ABSTRACT  
 
Feature detection is an important concept in the area of image processing to compute image abstractions of image 
information, which is used for image recognition and many other applications. One of the popular algorithm used is 
called the Speeded-Up Robust Features (SURF), which realized the scale space pyramid to detect the features. For 
this reason, prior researchers concentrate on applying parallelism onto the SURF multiple layers using technology 
such as Field Programmable Gate Array (FPGA). However, prior FPGA-SURF implementation does not emphasis 
on memory access limitation that can affect the overall performance of a system. This paper proposes a study on 
FPGA-SURF and memory access implementation in feature detection area. We conduct a profiling test and founds 
that the external memory access to fetch the integral image data in SURF highly affects the overall performance. We 
also found that the SURF algorithm memory access has redundant repeating pattern that can be reduced. Therefore, 
a controller design that stores repeating data (for the subsequent process) in an on-chip memory is proposed. This 
method reduces the external memory access and can increase the overall performance. The result shows that our 
proposed method improves the existing method (i.e. without the memory access reduction) by 1.23 times when the 
external memory latency is 20ns. 

Keywords: SURF, FPGA, Feature Detection, Memory Access, Fast Hessian 

1.0 INTRODUCTION 

The initial step in many image processing applications is to detect distinct feature of an image. Feature detection is a 
method used to identify the presence of distinctive characteristics in an image. The characteristics can be identified 
by locating the unusual activities or statistics variation between certain regions and their background. In Simultaneous 
Localization and Mapping (SLAM) for example, feature detection is used to find the interesting part of an image that 
would differentiate the landmark and the less important image details. This landmark is further processed to build a 
map of an environment and at the same time compute location. The feature detection step is important since it is the 
starting point to determine the functionality of the overall algorithm. For that reason, various number of feature 
detection algorithms have been studied and developed [1].  
 
While most feature detection algorithms in SLAM are implemented for online processing, many researchers have 
turned to the on-chip solutions such as Field Programmable Gate Array (FPGA) to meet the fast processing 
requirement. Although FPGA run slower than most CPUs, the ability to be programmed with pipelining and parallel 
architecture has made FPGA a suitable candidate to increase program performance [2][3][4]. This is because, software 
based implementation on a general purpose CPU may have to conduct hundreds of clock cycles and multiple 
instructions to do similar thing. For this reason, the review on the earlier research related to the feature detection 
implementation using FPGA is presented. The review will give attention to the eminent feature detection algorithms 
such as Harris, Tomasi-Kanadi, SUSAN, SIFT and SURF.  From the review, SURF shows significant advantage over 
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others. Therefore, we have chosen SURF algorithm to be further investigated. The investigation shows that the earlier 
researchers choose the SURF because the multiple layer of the scale space pyramid in the SURF algorithm can be 
processed in parallel. Though typical FPGA-SURF can improve software based approach, more efficient method is 
needed for real time processing especially for larger data input. Large data input is an important component to increase 
the overall feature detection accuracy.  In this paper, a software profiling tool is utilized to improve prior FPGA-SURF 
implementation further. The profiling will determine the slowest program section that affects the overall SURF 
algorithm performance. Based on the profiling result, a new design will be proposed to improve the prior FPGA-
SURF implementation.  

2.0 RELATED WORK 

The research to determine the specific characteristic that can differentiate image of interest and their background has 
been given close attentions by image processing researchers. This is due the importance of feature detection technique 
to ensure the reliability of the results. One of the earliest and widely used feature detection techniques is called Harris 
corner detector [5]. Harris corner detector improves prior Moravec [6] implementation by combining corner and edge 
detector based on the local auto-correlation function. Although Harris corner detector performs with good consistency 
on natural imagery, it is not scale-invariant. For that reason, Lindenberg [7][8] has studied the scale invariant problem 
and has proposed systematic methodology to select local appropriate scales which can be used for automatic scale 
selection.  In 2002, Mikolajczyk et al. [9] uses Lindenberg’s fundamental idea to introduce Harris-Affine approach. 
They show that Harris-Affine detector significantly improves the results for strong affine deformations compared to 
the Harris-Affine-Regions [10] and Harris-Laplace [11] approach. The Harris-Affine-Regions approach is a multi-
scale Harris detector with affine normalization of the point regions whereas the Harris-Laplace approach is a multi-
scale Harris detector with characteristic scale selection.  
 
The FPGA based implementation of the Harris corner detector comes several years later.  Researchers used the FPGA 
based implementation to increase the execution speed as well as to reduce power consumption. Cabani et al. [12] 
presented FPGA architecture for an affine-invariant feature detector based on the algorithm proposed by Mikolajczyk 
et al. [13]. Other implementation of Harris corner detector on FPGA can be seen from Tippetts et al. [14] and Hsiao 
et al. [15]. The Harris corner detector however demands very high computational power. The FPGA approach also 
has been implemented using Tomasi and Kanade’s [16] corner detector. Benedetti et al. [17] and Bissacco et al. [18] 
designs FPGA based Tomasi and Kanadi’s corner detector to efficiently track features. Although Tomasi and Kanadi’s 
corner detector is robust to rotation and translation, it does not perform well when there are changes in the scale of the 
picture. Claus et al. [19] on the other hand designs FPGA hardware accelerator to speed up “Smallest Univalue 
Segment Assimilating Nucleus” (SUSAN) algorithm [20]. SUSAN is chosen because of its relatively low 
computational complexity. Since no multiplications are required, SUSAN is an excellent choice for FPGA 
implementation. SUSAN is also effective for synthetic images but it does not execute well while used with natural 
images.  
 
Another well-known feature detection technique is called the Scale-Invariant Feature Transform (SIFT). SIFT is 
introduced by David Lowe [21][22] to improve the prior feature detection. It transforms image into a large collection 
of local feature vectors that being largely invariant to changes in scale, illumination, and local affine distortions. To 
increase the processing speed, Lowe approximated the Laplacian of Gaussian (LoG) through a Difference of Gaussians 
(DoG) filter. Since then, SIFT has went through several changes and improvement [23]. A FPGA based SIFT detector 
was proposed in Se et al. [24]. In the research, Se et al. utilized SIFT algorithm for their planetary exploration rovers. 
SIFT on FPGA is also employed by Barfoot et al. [25] and Chati et al [26]. Though able to improve the prior 
implementation, SIFT suffers from very high computational power similar to Harris Corner Detector.  
 
Herbert Bay [27] proposed approximation to the Laplacian of Gaussians by using box filter representations of the 
respective kernels based on SIFT. Their implementation is called the Speeded Up Robust Features (SURF) algorithm. 
Based on the experiments conducted, SURF shows the ability to outperform David Lowe’s state of the art SIFT and 
it variants namely PCA SIFT [28] and GLOH [29]. Juan and Gwun [30] compared the performance of SIFT, PCA-
SIFT and SURF. They claimed that SURF has a good performance as same as SIFT, however SURF is not stable to 
rotation and illumination changes. SURF has been implemented on FPGA to improve the overall execution speed. 
Svab et al. [31] claim that their FPGA-SURF implementation can achieve about 10 frames per second (fps) at HD 
(1024x768 pixels) resolution and takes less than 10W total power consumption. Bouris et al. [32] state that their 
proposed FPGA-SURF implementation outperforms state-of-the-art dual-core Intel CPU by at least 8 times. The 
proposed implementation can process standard video (640 x 480 pixels) at up to 56 fps and consumes less than 20W. 
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FPGA-SURF implementation is also implemented by Schaeferling et al. [33], which presented a novel, scalable and 
flexible architecture for computing robust features to be used in optical tracking applications. Meanwhile, Krajnik et 
al. [34], presents a standalone FPGA-based embedded module that capable of real-time extraction of SURF from 
camera images. The module processes approximately ten 1,024 × 768 pixel images per second, consumes 
approximately 6W of power, and occupies significantly less space than a GPU-based system with a similar 
performance. Therefore, the FPGA-SURF implementation is claimed to outperform the prior feature detection FPGA 
implementation. For that reason, SURF is chosen in this paper to be further studied.  

3.0 SURF ALGORITHM BACKGROUND 

SURF has been widely used by many researchers for their research and applications. Due to its popular demand, open 
source software implementation of SURF is also available. Table 1 shows the list of the software implementation of 
SURF. 
 

Table 1: SURF Algorithm Software Implementation 

 

By using these published available programs and codes, researchers are able to study the SURF implementation. 
Generally, SURF algorithm can be divided into three stages (i.e. integral image calculation, feature detection, and 
finding feature descriptor). In the first part, an integral image (I∑) calculation is performed using Eq. (1). In the 
equation, I represents the image and 𝑥 = (𝑥;  𝑦) is the location of the image pixel. The integral image is used as a 
rapid and effective way to calculate summations over image sub regions. It is useful later in the computations of 
Gaussian and Haar wavelet filter to find the SURF descriptor.  
 

 

The second step in SURF is to determine a distinct feature using a feature detector. The feature detector is based on 
the use of the Hessian-matrix approximation, which has good performance in computation time and accuracy. SURF 
exploits determinants of Hessian matrices to locate image’s important points. Hessian matrix (Eq. (2)) can be 
calculated as function of both locations 𝑥 = (𝑥;  𝑦) and scale σ using second order Gaussian derivatives known as 
Laplacian of Gaussian (LOG) (Eq. (3)). However, it is computationally expensive to calculate determinant using exact 
filters as in Eq. (2) and Eq. (3). Therefore, approximations in terms of box filters Dxx, Dyy and Dxy as in Fig. 1 are used 
in SURF algorithm. The determinants are then calculated using Eq. (4) with parameter ω is used to compensate the 
approximation error. Bay et al. [27] derives this ω value as equal to 0.912. This detector is now known as Fast-Hessian. 
The box filters are also used to create scale space which will allow objects under different scales to be recognized. 
The scale-space is divided into a number of octaves (with each octave has four intervals) and box filter size (Table 2).  
 

URL Description 
http://www.vision.ee.ethz.ch/surf/    Original closed source implementation 

http://dlib.net/  The Dlib C++ library 

http://sourceforge.net/projects/opencvlibrary/  The OpenCV implementation of SURF 

http://www.chrisevansdev.com/computer-vision-opensurf.html The OpenSurf Computer Vision Library by 
Christopher Evans [35] 

http://www.mathworks.com/matlabcentral/fileexchange/28300-
opensurf-including-image-warp  

Matlab Implementation of Christopher Evans’s 
OpenSurf by Dirk-Jan Kroon (University of Twente) 
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Fig. 1: Dxx, Dyy and Dxy filters for filter size 9×9 
 

Table 2: Scaling (σ) using scale space 

 
 
 
 

 
 

 

Following the scale space creation, the interest point localization task is performed. In this task, responses that fall 
below a predetermined threshold are discarded. Non-local maxima suppression is also performed among 26 closest 
neighbors (i.e. 9 points × 2 (for above and below) + 8 points in native scale) in the determinant scale space. This task 
is conducted to find a more refined set of candidate interest points. The interest points are further refine to sub-pixel 
precision using interpolation technique where the determinant of the Hessian function, 𝐻(𝑥;  𝑦;  𝜎) is expressed as a 
Taylor expansion up to quadratic terms centered at detected location (Eq. (5)). The interpolated location of the 
extremum 𝑥_ℎ𝑎𝑡 =  (𝑥;  𝑦;  𝜎) is established by taking the derivative of Eq. (5) and setting it to zero (Eq. 6). If 𝑥_ℎ𝑎𝑡 >
0.5 in the x, y or σ directions, the location has to be adjusted and the interpolation has to be performed once again until 
𝑥_ℎ𝑎𝑡 < 0.5 in all directions or the number of predetermined interpolation steps has been exceeded. This to ensure 
only the most stable and repeatable set of interest points is available for the upcoming process. 
 

 

In the third step of SURF, the orientation and descriptor extraction are calculated. The orientation calculation is 
performed to achieve rotation invariance by assigning each interest point a dominant direction. To do this, Haar 
wavelet responses of size 4s are calculated for a set of pixels that are located within a radius of 6s around the detected 
feature. In this case, s refers to the scale of the detected feature. Then, the responses are weighted with a Gaussian 
function with a standard deviation of 2.5s centered at the detected feature point. The dominant direction is selected 
using a sliding orientation window which rotates a circle segment covering an angle of 𝜋/3. The longest vector 
obtained when the two horizontal and vertical responses within the window are summed is chosen to be descriptor 
dominant direction. 
 

The descriptor is extracted by applying Haar wavelets to the pixels within a square window of size 20s centered on 
the interest point, and oriented along the orientation selected in the prior step. The window is further divided into 

Octave 1 5 

Interval 1 2 3 4 1 2 3 4 

Filter Size =  
3(2octave × interval + 1) 

9 15 21 27 99 195 291 387 

σ = Filter Size × 
஻௔௦௘ ி௜௟௧௘௥ ௌ௖௔௟௘

஻௔௦௘ ி௜௟௧௘௥ ௌ௜௭௘
 

= Filter Size × 
ଵ.ଶ

ଽ
 

1.2 2 2.8 3.6 13.2 26 38.8 51.6 
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smaller 4 × 4 square sub-regions to keep important spatial information. For each sub-region, a few simple features at 
5 × 5 regularly spaced sample points are computed using Haar wavelet of size 2s. Each sub-region contributes a 4-
dimensional vector 𝑣 = (∑𝑑𝑥, ∑𝑑𝑦, ∑|𝑑𝑥|, ∑|𝑑𝑦|) to form 64 dimensional SURF descriptor. 

4.0 SURF ALGORITHM SOFTWARE PROFILING AND ANALYSIS 

In this paper, an open source OpenSURF implementation and a software profiling tool is utilized to determine the 
section with the heaviest processing time. Fig. 2 shows SURF algorithm software profiling result. In the figure, it can 
be seen that IntegralImage_BoxIntegral has the highest self-time. The IntegralImage_BoxIntegral is a function within 
the feature detection stage where the determinant of the Hessian matrices or Fast-Hessian is calculated. It is used to 
compute response component of Dxx, Dyy and Dxy. This function is called many times depending on how many octaves 
are chosen. For example, if the number of octaves is 5, there will be 20 iterative processes (i.e. for filter size 9, 15, 21, 
27, 15, 27, 39,….291, 387) to extract responses from an image. Since certain octaves use equivalent filter with the 
same size, the iterative process can be reduced to 12 (Table 3). Therefore, in a typical sequential software 
implementation, the process will have to wait and repeats 12 times. To reduce the waiting time, researchers shifted to 
FPGA based implementation in order to process data in parallel. The motivation for such implementation comes from 
the nature of the SURF algorithm that allows multiple layers of the scale-space pyramid to be processed 
simultaneously and discards the need to subsample the image. In a prior implementation like SIFT, each layer relies 
on the previous layer where the input image is iteratively convolved with Gaussian kernel and repeatedly sub-sampled 
(Fig. 3). Thus, it is not easy for such typical implementation to utilize parallelism. For this reason, FPGA-SURF related 
works conducted by prior researchers such as Svab et al. [31], Bouris et al. [32] and Schaeferling et al. [33] concentrate 
on performing box filters parallel calculation at variable scale levels.  
 

 

Fig. 2: Software profiling result of the SURF algorithm 
 

Table 3: Octaves and its filter size (equivalent filter with the same size can be removed (i.e. the number with 
strikethrough)) 

Octaves Filter size = 3(2octave × interval + 1); interval = 1,2,3,4 

1 9,  15, 21, 27 

2 15, 27, 39, 51 

3 27, 51, 75, 99 

4 51, 99, 147,195 

5 99, 195,291,387 

 
 

 
Fig. 3: Difference between SIFT (left) scale space and SURF scale space (right) [11] 
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Though prior FPGA-SURF implementation concentrates on designing FPGA architecture to process multiple layers 
of the scale-space pyramid in parallel, the most time consuming part of the SURF program has not been highlighted. 
Hence, we take additional efforts to examine the slowest section of the SURF program by carefully study the 
IntegralImage_BoxIntegral function as shown in Fig. 4. From the observation, it can be seen that one of the reasons 
for the slow processing time is the need of the IntegralImage_BoxIntegral function to access memory to fetch integral 
image data (i.e. iimg).  The calculation of Dxx and Dyy takes 8 memory accesses each, while the calculation of Dxy 

needs 16. Altogether, the memory needs to be accessed 32 times (i.e 8+8+16 from Dxx, Dyy and Dxy) for each round. 
The cycles needed for accessing memory depend on the value of initial sample, filter size and the image size. Table 4 
shows the calculation on how many times the memory is accessed when initial sample = 2 and image size =377 × 300. 
From table 4, it can be seen that the total memory access for the example is equal to 4,204,928 times. This indicates 
that a single port RAM with one data input and one data output would have to wait for a total number of 4,204,928 
cycles to complete the process. Based on this example, it can be said that although the address calculation can be 
computed in parallel, memory access can be a limiting factor to the performance increase. For this reason, the address 
allocation for the memory access is studied.  
 
An example of the address generation output to access the integral image data for filter = 9 is shown in Appendix 1. 
The calculation is based on the generation of arrays for N-D functions and interpolation (i.e. ndgrid) which has 
constant values. A deeper look at the generated address shows that several values are repeating or redundant in other 
rounds. In Appendix 1 for example, the values of ADxx1 at row number 3 to the end (i.e. -756,-2,752,1506……, 
(upward diagonal shaded)) are values that are repeated form the values of ADxx2 at row number 1 to the end. This is 
also true for BDxx1 & BDxx2, CDxx1 & CDxx2, DDxx1 & DDxx2, ADxy1 & ADxy3,   BDxy1 & BDxy3, CDxy1 & CDxy3, 
DDxy1 & DDxy3, ADxy2 & ADxy4, BDxy2 & BDxy4, CDxy2 & CDxy4, and DDxy2 & DDxy4. In a typical implementation, 
memory needs to be accessed 902,400 (i.e. 28,200 rounds × 32 data) times when filter = 9 (Table 4). However, this 
number can be reduced to 32 + 30 + 20 × (28,200 − 2) = 564,022 times if the repetitive address is discarded from 
accessing the external RAM. The number 564,022 is obtained from 32 data of the first round (i.e. first row), 30 data 
from the second round/row (i.e. BDxx2 and DDxx2 (i.e. addr 6 & 8) are not included since they are repeated values 
from BDxx1 and DDxx1 (i.e. addr 2 & 4)), and 20 data for the subsequent rounds (i.e. ADxx1, CDxx1, BDxx2, DDxx2, 
ADxy2, BDxy2, CDxy2, DDxy2, ADxy3, BDxy3, CDxy3, DDxy3 (i.e. addr 2,4,5,7,17,18,19,20,29,30,31,32) are repeated 
values from prior addresses).  
 

Further studies on the address generation for other filter size also shows repeating and redundant pattern. However, 
the access pattern for other filter size is slightly different. Appendix 2 shows the address generation result when the 
filter size is 15 pixels. From the appendix, it can be observed that the second and fourth column starts to repeat after 
the second round and another 10 more addresses repeats after the third round. Therefore, the total memory access for 
filter size = 15 can be reduced to 564,034. The remaining address generation for other filter size is also observed. 
Based on the observation, the number of memory access considering maximum of 4 rounds buffering is summarized 
in Table 5. In comparison, the proposed approach is able to reduce the memory access to 4,204,928/2,814,336 =
1.4941 times. 
 

Table 4: Example calculation on number of times memory is accessed when initial sample = 2 and image size = 
𝟑𝟕𝟕 × 𝟑𝟎𝟎 

Step 
size 

Filter size 
Number of cycles = 

𝑓𝑙𝑜𝑜𝑟 ൬
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

𝑤𝑖𝑑𝑡ℎ

𝑠𝑡𝑒𝑝
൰ 

Number of times memory is accessed 
(i.e. no. of cycles × no. of different filter size × 

32*) 

2 9,15,21,27 𝑓𝑙𝑜𝑜𝑟 ൬
377

2
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

300

2
൰ = 28,200 28,200 × 4 × 32 =  3,609,600 

4 39,51 𝑓𝑙𝑜𝑜𝑟 ൬
377

4
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

300

4
൰ = 7,050 7,050 × 2 × 32  =  451,200 

8 75,99 𝑓𝑙𝑜𝑜𝑟 ൬
377

8
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

300

8
൰ = 1,739 1,739 × 2 × 32  =  111,296 

16 147,195 𝑓𝑙𝑜𝑜𝑟 ൬
377

16
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

300

16
൰ = 414 414 × 2 × 32  =  26,496 

32 291,387 𝑓𝑙𝑜𝑜𝑟 ൬
377

32
൰ × 𝑓𝑙𝑜𝑜𝑟 ൬

300

32
൰ = 99 99 × 2 × 32  =  6,336 

   𝑇𝑜𝑡𝑎𝑙 =  4,204,928 
 

 

* Note:  The value 32 comes from 2 Dxx, 2Dyy and 4 Dxy filters with each filter will access memory four times (as in 
ABCD in Fig. 4). Therefore(2 + 2 + 4) × 4 = 32. 
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Fig. 4: Snippet code of IntegralImage_BoxIntegral function 

Table 5: Number of reduced memory access when octaves = 5, initial sample = 2 and image size = 𝟑𝟕𝟕 × 𝟑𝟎𝟎 

Filter Size Number of memory access 

9 32 + 30 + 20 × (28,200 − 2) =  564,022 

15 32 × 2 + 30 + 20 × (28,200 − 3) =  564,034 

21 32 × 3 + 30 + 20 × (28,200 − 4) =  564,046 

27 32 × 4 + 30 + 20 × (28,200 − 5) =  564,058 

39 32 × 3 + 30 × (7,050 − 3) =  211,506 

51 32 × 4 + 30 × (7,050 − 4) =  211,508 

75 32 × 3 + 30 × (1,739 − 3) =  52,176 

99 32 × 4 + 30 × (1,739 − 4) =  52,178 

147 32 × 3 + 30 × (414 − 3) =  12,426 

195 32 × 4 + 30 × (414 − 4) =  12,428 

291 32 × 3 + 30 × (99 − 3) =  2,976 

387 32 × 4 + 30 × (99 − 4) =  2,978 

Total 2,814,336 

for i=1:length; % length=12 when octaves=5 
…. 
step = fix(step); % step size for this filter 
b = fix((filtSize - 1) / 2 + 1); % border for this filter 
l = fix(filtSize / 3); % filter lobe (filter size / 3) 
w = fix(filtSize); % filter size 
img = [x,y];   % original image size 
  
[ac,ar]=ndgrid(0:width-1,0:height-1); 
ar=ar(:); ac=ac(:); 
  
% get the image coordinates 
r = int32(ar * step); 
c = int32(ac * step); 
 
% Dxx=Dxx1-Dxx2*3 
Dxx =   IntegralImage_BoxIntegral(r - l + 1, c - b, 2 * l 
- 1, w,img) – IntegralImage_BoxIntegral(r - l + 1, c - 
fix(l / 2), 2 * l - 1, l, img) * 3; 
% Dyy=Dyy1-Dyy2*3 
Dyy =   IntegralImage_BoxIntegral(r - b, c - l + 1, w, 2 
* l - 1,img) – IntegralImage_BoxIntegral(r - fix(l / 2), 
c - l + 1, l, 2 * l - 1,img) * 3; 
% Dxy=Dxy1+Dxy2- Dxy3- Dxy4 
Dxy = + IntegralImage_BoxIntegral(r - l, c + 1, l, l,img) 
+ IntegralImage_BoxIntegral(r + 1, c - l, l, l,img)       - 
IntegralImage_BoxIntegral(r - l, c - l, l, l,img) – 
IntegralImage_BoxIntegral(r + 1, c + 1, l, l,img); 
…. 
% Equation 4 (Bay’s ω=0.912) 
rl.response = (Dxx.*Dyy-0.81*Dxy.*Dxy)  
…. 
 
end 

 
function 
an=IntegralImage_BoxIntegral(row,col,rows,cols,iimg) 
…. 
r1 = min(row, size(img,1)); 
c1 = min(col, size(img,2)); 
r2 = min(row + rows, size(img,1)); 
c2 = min(col + cols, size(img,2)); 
 
for i=1:length; % length=12 when octaves=5 
 
% Get the values at the corners of the box integral (fast 
1D index look up) 
A = iimg(max(r1+(c1-1)*sx,1)); 
B = iimg(max(r1+(c2-1)*sx,1)); 
C = iimg(max(r2+(c1-1)*sx,1));   % access memory to fetch 
D = iimg(max(r2+(c2-1)*sx,1));   % integral image data 
…. 
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data1:1,2,3,4,5,6,…………,32 
(store data1 2,4) 

data2:1,2,3,4,5,6,…………,32 
(store data2 2,4,5,7,17 to 
20,29 to 32”; copy stored 

data1 2,4 to data2 6,8) 
 
 

data3:1,2,3,4,5,6,…………,32(
store data3 “2,4,5,7,17 to 
20,29 to 32”; copy stored 
data2 “2,4,5,7,17 to 20,29 
to 32” to data3 “6,8,1,3,25 

to 28,21 to 24”) 
data4:1,2,3,4,5,6,…………,32(

addr1: 1,2,3,4…….32 
addr2: 1 to 5,7,9 to 32 (skip addr 6, 

8) 
addr3: 2,4,5,7,9 to 20,29 to 32 (skip 

addr 1,3,6,8,21 to 28) 
 
 

addr4: 2,4,5,7,9 to 20,29 to 32 (skip 
addr 1,3,6,8,21 to 28) 

…. 
addrn: 2,4,5,7,9 to 20,29 to 32 (skip 

addr 1,3,6,8,21 to 28) 
 

Data in Data out 

iimg 

5.0 IMPLEMENTATION 

Based from our prior discussion, the observation shows that there are addresses to the external memory in the next 
round which are redundant or the same as addresses in the prior round. Since the latency to the external memory is 
more than the latency of the internal/on chip memory, we propose an additional circuit or a controller that can control 
the access to external redundant data. The proposed controller contains a FIFO chip memory that copies data that is 
still needed for the next round. As the data needed is already in the on chip memory, access to the external memory 
can be reduced. The design and implementation to calculate SURF Fast-Hessian is conducted using Xilinx ISE 10.1 
tools. The design is divided into encoder and decoder module. The encoder will generate Fast Hessian response 
addresses which will be used to fetch the integral image (iimg) values stored in the external RAM. Fig. 5a and Fig. 5b 
illustrates the difference between the common  way of accessing the external RAM and the proposed reduced RAM 
access to fetch iimg values when filter size = 9. The key idea of the proposed design is to limit the generation of 
redundant address to access the same location with similar data.  Fig. 6 shows the generated RTL schematic which 
consists of several modules. Table 6 on the other hand shows the definition of the abbreviation used in the generated 
RTL schematic. The rcGenerator is the row and column generator which generates the image coordinates to be used 
by response component Dxx, Dyy and Dxy. The MuxCtrl is a module used to convert multiple parallel data generated 
from Dxx, Dyy and Dxy into single data which will be used to access single port memory via FIFO module. Following 
the example given in the previous section, this module will produce 2,814,336 addresses compared to 4,204,928 
addresses using normal approach.  
 

  

(a) (b) 

Fig. 5: (a) Usual Way of Accessing RAM (b) Reduced RAM Access 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The differences between the proposed design and the typical design lies in this rcGenerator module, where repeated 
or redundant addresses are discard to lessen the address generation and avoiding repeated address to be used to search 
for iimg data in the memory. In a typical implementation, the column values would be triggered every 32 counts to 
process 32 calculated addresses (i.e. 8 for Dxx & Dyy each, 16 for Dxy (refer to Appendix 1)). In the rcGenerator module 
(Fig. 7), ctrl1 is used to produce column coordinate (i.e. ac × step = c) values by enabling cnt2 counter based on the 

rcGenerator 

border 

lobe 

IDxx 

IDyy 

IDxy 

MuxCtrl 

cnvrt 
to RAM 

filtSize 
width 
height 
step 

x 

globalRst 
y 

a_out 

addr1:1,2,3,4,5,6,…………,32 
addr2:1,2,3,4,5,6,…………,32 
 
 
addr3:1,2,3,4,5,6,…………,32 

data1:1,2,3,4,5,6,…………,32 
data2:1,2,3,4,5,6,…………,32 
 
 
data3:1,2,3,4,5,6,…………,32 
 

Data in Data out 

iimg 

Fig. 6: Reduced Memory Address Encoder 
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filter values.  If the filter size = 9 for instance, the column values will be triggered after 32 counts, followed by 30 
counts and continues with 20 counts. Fig. 8 shows the difference between the two implementations when filter size = 
9. From Fig. 8 , it can be seen that the proposed approach is faster than the typical approach. The rcGenerator module 
also generates the row coordinate values (i.e. ar × step = r) which triggers cnt7 counter when ac and the width value 
is equal. 
 
The decoder module (Fig. 9) is a module that produces the response component data Dxx, Dyy and Dxy based on the 
fetch integral image (iimg) data. These values will be normalized and applied to compute the determinant of Hessian 
response and Laplacian sign.  In a normal implementation, the fetched iimg data can be distributed evenly to 32 
registers to store 32 data (i.e. ABCD of Dxx1, ABCD of Dxx2, ABCD of Dyy1, ABCD of Dyy2, ABCD of Dxy1, ABCD 
of Dxy2, ABCD of Dxy3, ABCD of Dxy4) in each round. However, the data received by the decoder module (i.e. a_in) 
is the compressed iimg data fetched from the RAM according to the encoder module. Since a number of data have 
been discarded by the encoder module, the ctrlReg is programmed to enable the 32 registers in the enReg based on 
the encoder module. The register for the discarded data will be disabled to allow the next data to come in. If filter size 
= 9 for example, all the 32 registers will be enabled sequentially in the first round. In the next round, 30 registers will 
be enabled and in the following round only 20 registers will be enabled (Fig. 10). The data that will be used for the 
discarded data is stored in a FIFO inside the cpyData. A multiplexer will be used to choose between current data or 
the copied data inside the FIFO. Fig. 11 shows an example of the cpyData module where the input a2 can be used for 
both output ao1 and output ao2 based on the ctrlMux. 
 

Fig. 7: The rcGenerator module 
 

Fig. 8: The difference between typical approach and 
proposed approach 

 

Fig. 9: Reduced Memory Address Decoder 

 
 

Fig. 10: The ctrlReg Module (when filter size = 9) Fig. 11: The cpyData Module 

 

sub 
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ctrl3 cvrt cvrt cnt3 
1 

1 

cvrt ctrl1 cnt2 mult 
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cvrt ctrl6 

or 
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globalRst 
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filtSize 

cnt1 

a_in (from RAM) 
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enReg ctrlReg cpyData 
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Dxx 

Dyy 

Dxy 

1 32 64 96 128 62 82 102 122 142 160

1 2 3 4 5 

1 2 3 4 5 6 

Typical 
Approach 

Proposed 
Approach 

32 30 20 20 20 20 

1,2,…32;  1 to 
5,7,9 to 32; 
2,4,5,7,9 to 
20,29 to 32 

      1              2               3             enable all reg        32 
      1             2                3           disable reg 6 &8      32 
disable        2             disable  disable reg 6,8,21 to28  32 
 

reg1
  

reg2
  

reg3
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ctlEn 
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Table 6: The definition of the abbreviation used in Fig. 5, Fig. 6 and Fig. 8 

 Abbreviation Definition  
 
 
 
 

Port 

filtSize Response map filter size (i.e. 9, 
15,21,…..,387) 

width Response map width 
height Response map height 
step Response map step size 

globalRst Global reset 
x,y Original image size (width, height) 

a_out Address to fetch iimg 
a_in iimg data input 

 
 
 
 
 
 
 
 

Module 

rcGenerator Generate image coordinates row and 
column (ndgrid)  

IDxx, IDyy, 
IDxy 

Integral Image Box Integral 

border Border for filter = b = (filtSize - 1) / 2 + 1)  
lobe Lobe for filter =l= filtSize /3 

MuxCtrl Multiplexer controller 
cnvrt converter 
sub subtractor 
ctrl controller 
or Logical OR  
cnt counter 

mult multiplier 
ctrlReg Control register 
enReg Enable register 

cpyData Copy data controller 
rspnseCmpnt Response component 

 

6.0 PERFORMANCE COMPARISON 

For performance comparison, a common approach encoder and decoder are developed using Xilinx ISE. Both typical 
and proposed approaches are synthesized and implemented using Xilinx Spartan 3a dsp FPGA. Table 7 shows the 
device utilization and timing summary for both implementations. It can be seen, that the number of device utilization 
or area increase in the proposed approach is small. For the speed comparison (i.e. when octaves = 5, initial sample = 
2 and image size = 377 × 300, DRAM access latency 20ns) the typical encoder and decoder completes the processing 
at (12.526 + 9.93 + 20)𝑛𝑠 × 4,204,928 𝑐𝑦𝑐𝑙𝑒𝑠 = 178.5ms when maximum clock speed (Table 7) is utilized. The 
proposed encoder and decoder on the other hand completes at (17.207 + 14.29 + 20)𝑛𝑠 × 2,814,336 𝑐𝑦𝑐𝑙𝑒𝑠 =
144.9 ms. In the software based implementation, the software encoder alone needs 116.3ms to complete its process 
using Intel(R) Core(TM)2 Duo CPU 2.33GHz, 3.23GB of RAM. This shows that the proposed FPGA-SURF 
implementation executes faster than the software implementation and the prior FPGA-SURF implementation. 

 

Table 7: Device utilization and timing summary 

 Normal 
Encoder 

Normal 
Decoder 

Proposed 
Encoder 

Proposed 
Decoder 

Number of 
Slices 

2683 698   2816   967   

Number of 
Slice Flip 
Flops 

1284   905   1300   1210   

Number of 
4 input 
LUTs               

4710   647   4941   1504   

Number of 
DSP48s 

63   4   63   4   

Minimum 
period 

12.526ns 9.930ns 17.207ns 14.290ns 
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7.0 DISCUSSION  

Based on the results, it is found that the Fast Hessian computation consisting Dxx, Dyy and Dxy box filters response 
component computation, takes the longest processing time. Since SURF only varies in its filter size and discards the 
need to subsample an image, prior FPGA-SURF researchers applies parallelism to the SURF multiple layers of the 
scale-space pyramid. Hence, the Fast Hessian computation of SURF can be done in parallel. Though parallel design 
is proposed, the limitation caused by the memory access has not been discussed thoroughly. Seeing that SURF requires 
frequent memory access to fetch the integral image data (i.e. iimg), a close study on the address generation to fetch 
the integral image data is conducted.  
 
Based on the study, we discover that the address generation comprises significant redundant repetitive patterns that 
can be safely discarded. Thus, an additional circuit is proposed to be inserted into the original encoder and decoder of 
the original response component module. The additional encoder circuit is designed with a controller that skips 
generating redundant or similar address location as the prior generated addresses. Before the address is skipped, the 
address that will be used by the subsequent round is stored in a FIFO located in the encoder module. The purpose of 
the additional circuit is to reduce the access to the external memory such as SDRAM. Though the external memory is 
needed to store large integral image data, it suffers from a significant amount of access latency. This is due to the 
dynamic characteristic of an SDRAM which has to be refreshed periodically to maintain its content. The latency forces 
the memory controller to wait between data request. Other than that, the switching process between its memory space 
(i.e. banks, rows and columns) will produce some overhead. Typical SRAM (i.e. on-chip) access latency is between 
2-3 ns while DRAM has 20-35 ns access latency. DRAM has also higher cycle time of 2 times its access latency since 
it cannot begin new access while refreshing. For this reason, a FIFO using FPGA on chip memory is chosen to regulate 
the flow of data from one module to another. The on chip memory typically has a latency of only one clock cycle, it 
has the highest throughput and has the lowest memory latency in an FPGA based system.  In this design, the on chip 
memory access only consider maximum of 4 rounds buffering to suite the limited capacity of the on chip memory.   
 
The result in Table 7 shows that the number of slices and minimum period has increased. Since additional circuit to 
skip and duplicate redundant addresses is included in the proposed design, the increase on the number of slices can’t 
be avoided. However, the slight increase doesn’t affect much the overall area of the FPGA design. The slight increase 
in the minimum period also doesn’t affect the overall execution time. This is due to the fewer data generated by the 
proposed design and the reduction of 1.49 (i.e. 4,204,928/2,814,336) times external memory access. From the result, 
it can be shown that the proposed design able to execute 23% faster than the original approach when DRAM access 
latency is at 20 ns. The proposed method will also show higher speed improvement if larger image size is implemented.   

8. CONCLUSION 

The purpose of this paper is to improve prior FPGA-SURF implementation conducted by prior researchers such as 
Svab et al. [31], Bouris et al. [32], Schaeferling et al. [33]. Since the most time consuming part of SURF is not 
highlighted by these researchers, a software profiling tool is utilized to find section of program that demands the most 
processing time. The software profiling result shows that one of the reasons for the slow execution time is caused by 
the frequent external memory access to fetch the integral image data. In this paper, the memory access analysis shows 
that about 33% (i.e. (4,204,928 − 2,814,336)/ 4,204,928) of the access are redundant and can be discarded. 
Therefore, additional circuit on top of the original response component module is proposed to avoid the redundant 
memory access. As shown from the result, though there is an increase to the minimum period of the proposed encoder 
and decoder, the increase is compensated by the fewer data to be processed. The result shows that the proposed design 
able to execute 1.23 times or 23% faster when external latency is 20ns. The external memory such as SDRAM suffers 
from a significant amount of high access latency and always greater than the FPGA on chip memory proposed in this 
design. Therefore, the proposed design will be able to speed up the overall FPGA-SURF implementation.  
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Appendix 1 (Filter Size = 9) 
 
Note: negative values will be converted to 1 
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Appendix 2 (Filter Size=15) 
 
Note: negative values will be converted to 1 
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