
An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

13

Malaysian Journal of Computer Science, Vol. 34(1), 2021

AN APPROACH AND A TOOL FOR MERGING A SET OF MODELS IN PAIRWISE WAY

Mohammed Boubakir1* and Allaoua Chaoui2

1,2MISC Laboratory, Department of Computer Science and its Applications, Faculty of NTIC

University Constantine 2-Abdelhamid Mehri, Algeria

Email: boubakirmohamed@yahoo.fr1* (corresponding author), a_chaoui2001@yahoo.com2

DOI: https://doi.org/10.22452/mjcs.vol34no1.2

ABSTRACT

Model merging addresses the problem of combining information from a set of models into a single one. This task is

considered to be an important step in various software engineering practices. When many (more than two) models

need to be merged, the most practiced technique is to perform the merge in a pairwise way, without considering the

order of merging. The problem with this technique is that the resulting quality is not guaranteed because it is influ-

enced by such an order. In this paper, we propose a pairwise approach for model merging aiming to provide better

results by taking into account the order of merging. This approach proposes to combine models in an iterative process

until obtaining only one model. At each iteration, we first compare each pair of models in order to measure the

similarity between them and to identify the correspondences between their component elements. This is performed

using two heuristic-based operators respectively named compare and match. After that, we identify the most similar

pairs of models and merge them using a proposed operator. We have implemented our approach as tool support called

3M and evaluated it on a set of case studies.

Keywords: Model merging, Model comparison, Maximum weighted matching, Compare, Match, Merge.

1.0 INTRODUCTION

With the increased adoption of MDE (Model-Driven Engineering) [1] in industry, model merging is becoming one of

the indispensable tasks in different software engineering activities. Indeed, models are frequently developed inde-

pendently by eventually different teams. Therefore, it will be necessary for many situations to combine a set of models

into a single one to get a unified perspective over them, to capture the relationships, and to understand the interactions

between them. The combination aims also to carry out diverse types of analysis like synthesis, verification, and vali-

dation [2] [3]. Model merging is usually used to resolve conflicts that occur when integrating independently developed

modules into a single project [4] [5], but it is also used in diverse other domains. For example, model merging is used

to build a global ontology from a set of local ones in the ontology research field [6], and to merge conceptual database

schemas in the database field [7]. In Software Product Line Engineering (SPLE) [8], model merging is considered as

a fundamental step when a set of similar product variants need to be migrated into a model-based Software Product

Line (SPL) [9]. In the literature, model merging is defined as the process of combining information from two or more

models into a single one [4] [9], and it is commonly implemented through the three following operators: compare,

match and merge [10] [11]. The first and the second operators are used to detect relationships between models, while

the third one is used to combine them into a single model [12].

Numerous approaches for model merging have been proposed in the literature, most of which make assumptions about

the types of models to be merged or focus on only a sub-problem of model merging like model comparison. For

example, the authors in [13] and [14] concentrate on the comparison of UML models. In [2] and [12], the authors

address the problem of matching and merging Statecharts models. Kpodjedo et al. [15] study the problem of detecting

many-to-many matches in diagrams. Other existing work [16] [17] [18] propose solutions for merging EMF (Eclipse

Modeling Framework) models [19], Rubin et al. [9] propose a solution for model merging which consists of simulta-

neously processing all input models. The vast majority of these approaches have focused only on merging a pair of

models. However, several software development activities like, for example, model versioning [20] [21] [22] and

Software Product Lines [10] [23] [24] [25] require combining many models. To do this, models are often merged in

a pairwise way, i.e., the input models are merged progressively, by combining only two models at a time, without

considering the order of merging. This solution does not provide any guarantee on the quality of results, which depends

on the order of merging [9]. The merge quality is the ability to matching the elements of models that are more similar

to each other. To the best of our knowledge, the approach described in [9] is one of the rare works that provides a

solution to deal with many (more than two) models and takes into account the quality of merge. It focuses only on the

mailto:boubakirmohamed@yahoo.fr1
mailto:a_chaoui2001@yahoo.com2

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

14

Malaysian Journal of Computer Science, Vol. 34(1), 2021

matching problem and proposes to simultaneously treat all input models. This approach has limited applicability to

models with a relatively simple representation. In the case of complex models, it becomes very difficult to process

simultaneously the set of input models, especially with the presence of references between the elements of models.

In this context, we address in this paper the following question: How can we obtain the best quality results when

merging a set of models in a pairwise way? Our main idea is to consider the order of merging the input models to

obtain better results. This work extends and refines our previous work [26] by proposing a more refined implementa-

tion of the three operators seen above (compare, match and merge), and using a generic representation of models. In

this representation, each model contains a set of elements, and each element contains other elements (its sub-elements)

or values. To this end, we make the following contributions:

─ An implementation of the three operators: compare, match, and merge. This allows for processing a pair of models.

The first and the second operators are heuristic-based and allow to identify correspondences between the elements

of a pair of models, and between the sub-elements of a pair of elements. We use two heuristics including typo-

graphic and linguistic similarities between the vocabularies of different models. As we aim to improve the quality

of results, we try here to combine each element with the most similar to it using the Hungarian method [27]. The

merge operator is not heuristic-based and uses the result of the two previous operators to obtain the merged model.

─ An algorithm for processing a set of models. Our main idea to improve the quality of results is to combine, as much

as possible, the most similar pairs of models. Thus, we propose to iteratively merge the set of input models by

repeating the following steps: We firstly compare input models to assign a similarity degree for each pair of them.

Then we combine a subset of these pairs such that the sum of their similarity degrees is maximal based on an

implementation of the Edmond's algorithm [28].

─ Implementation and evaluation. We implemented, and evaluated our approach by applying it on a set of UML

models. This implementation is freely available as an open source project on GitHub platform1.

The remainder of this paper is organized as follows: Section 2 presents a motivating example. Section 3 outlines some

basic concepts of model merging and gives some preliminary definitions. Our approach for model merging is pre-

sented with more details in Section 4. Tool support for this approach is described in Section 5. In Section 6, we

evaluate our approach and discuss its advantages and limitations. In Section 7, we present related work. Finally, in

Section 8, we conclude the paper and give an outlook on our future work.

2.0 MOTIVATING EXAMPLE

To motivate our work, we use the simple example of UML models presented in Fig. 1(a). This example has been

inspired by [9] [26]. It contains three models respectively denoted by M1, M2, and M3. Each model contains a set of

elements and each element contains a set of sub-elements, where the elements are classes and the sub-elements are

their attributes. For example, M1 contains one element, the University class, while M2 contains two elements, the

School and Student classes. The University class contains three sub-elements: the class name which has the value

University, and the name and address attributes. To simplify the manipulation of these models, and as illustrated in

Fig. 1(b), we assign a unique identifier to each element (The number in brackets in the bottom right of the element)

and each sub-element (The number in square brackets before the sub-element name).

The first step toward merging a set of models is to compare them to measure the similarity between them. The com-

parison result between the three models M1, M2, and M3, is shown in Fig. 1(b). Every two elements belonging to two

different models are connected by a line labelled by the similarity degree between them. Similarly, every two models

are connected by a dashed line labelled by the similarity degree between them. In Section 4, we present more details

on how to calculate the similarity degree between a pair of elements and between a pair of models.

1 The web-based Git version control repository hosting service, https://github.com

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

15

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Fig. 1: Example of models and model comparison result: (a) Three simple UML models, and (b) the comparison

result between the three UML models

As mentioned in [9] and in [26], there are different possibilities to merge a set of models and each of them may produce

a result different from the others. For example, Fig. 2 presents the four possible models obtained by merging the three

models of Fig. 1. These models are respectively denoted by RM1, RM2, RM3, and RM4. Each merge is distinguished

from the others by how it combines the elements of the input models. For example, RM1 which contains two elements

designated respectively (1, 2) and (3, 4) is obtained by combining element 1 with element 2, and element 3 with

element 4, while RM2 is obtained by combining element 1 with element 3, and element 2 with element 4.

Fig. 2: Examples of merge results

(a)

(b)

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

16

Malaysian Journal of Computer Science, Vol. 34(1), 2021

The sub-elements that appear in blue in Fig. 2 are sub-elements shared by at least two original elements. Comparing

the first and the second merges (The merge producing RM1 and the one producing RM2), it is obvious that the first one

is better than the second one because it lets to combine the elements, which are the most similar to each other. More

precisely, the first merge produces more shared sub-elements than the second one. The quality of a merge is measured

using a weight such that the higher it is, the better the quality of the merge. We present in Section 3 how to assign a

weight to a merge. Here are the weights of the merges that produce the four models of Fig. 2: 0.62, 0.16, 0.22, and

0.31. The first merge is best since it has the greatest weight.

In order to better understand the factors that influence the merge quality, we present below with details three possi-

bilities to merge the three models of Fig. 1 in a pairwise way:

1. In the first step, we merge M1 with M2 by combining the elements 1 and 2. This produces a model with two elements

(1, 2) and 3. After that, we merge the resulting model with M3 by combining the elements 3 and 4 to obtain RM1.

2. In the first step, we merge M1 with M2 by combining the elements 1 and 3. This produces a model with two elements

(1, 3) and 2. Then, we merge the resulting model with M3 by combining the elements 2 and 4 to obtain RM2.

3. In the first step, we merge M1 with M3 by combining the elements 1 and 4. This produces a model with one element

(1, 4). Finally, we merge the resulting model with M2 by combining the elements (1, 4) with 3 to obtain RM4.

As can be observed, the result and therefore the quality of a merge depend on two factors:

─ The order of merging the input models: merging M1 with M2, then merging the result with M3 is different from

merging M1 with M3, then merging the result with M2.

─ The way in which the elements of a pair of models are matched: When we merge M1 and M2 by combining element

1 with element 2 does not give the same result as merging them by combining element 1 with element 3.

The approach presented in this paper aims to improve the merge quality by taking into account the two previous

factors. Before presenting our approach in Section 4, the next section discusses model merging and the related con-

cepts.

3.0 BACKGROUND AND PRELIMINARY DEFINITIONS

We present in this section some basic concepts of model merging and some preliminary definitions, which are neces-

sary for the comprehension of our approach. First, we define the concept of model merging in which a model is

assumed to be represented as a set of elements. Next, we briefly present different categories of model merging ap-

proaches. Then, we present the concept of a tuple and show how to assign a similarity degree to a given tuple. This

concept is involved when merging many (more than two) models in addition to the concept of a pair of elements

manipulated when merging a pair of models. After that, we present the concept of tuple match which is a way of

structuring the elements of a set of models in tuples. Finally, we describe how to measure the quality of a merge.

3.1 Background on Model Merging

3.1.1 Definition

Model merging is a technique that aims to combine a set of models to provide a single model [4] [9]. It is defined as

a process that involves three steps respectively performed using the following three operators: compare, match, and

merge [9] [10] [11].

─ The compare operator compares a pair of models to calculate the similarity between their elements. As result, it

assigns for each pair of elements a number between 0 and 1 representing the similarity degree between them.

─ The match operator allows deciding whether an element is the same as another one or not based on the result of the

compare operator.

─ The merge operator allows combining the elements of a pair of models to obtain a single model based on the result

of the match operator.

3.1.2 Classification of Model Merging Approaches

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

17

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Model merging approaches are classified into two and three-way approaches. They are also classified into state-based

and change-based approaches.

Two-Way or Three-Way Merging: Two-way merging approaches merge two versions of a model regardless of their

ancestor. By cons, three-way merging approaches perform the merge by exploiting the information of the common

ancestor [22].

State-Based, Change-Based, or Operation-Based Merging: State-based merging approaches combine the elements of

two model versions using only the information about the states of the models. By cons, change-based merging ap-

proaches exploit also the information about changes that have been made during the evolution of the model. Operation-

base merging is a subcategory of change-based merging, in which changes are modeled in the form of operations [22]

[29].

The approach presented in this paper is a two-way and a state-based approach, because the information about the

common ancestors of models and the changes that brought models into their current states are not considered.

3.2 Preliminary Definitions

3.2.1 Tuple of Elements

Let M = {M1, M2,…, Mn} be a set of models and let EM be the set of all elements of M which is defined as follows:

 𝐸𝑀 = ⋃ 𝐸𝑖𝑖=1..𝑛 (1)

where Ei represents all elements of the model Mi. A tuple [9] of elements (or tuple for simplicity) denoted by t is

defined as a non empty subset of EM. If a tuple does not contain two elements from the same model, it is said to be

valid. Formally:

 ∀(𝑒1, 𝑒2) ∈ 𝑡2, ∀(𝑀1, 𝑀2) ∈ 𝑀2, (𝑒1, 𝑒2) ∈ 𝑀1 × 𝑀2 ⇒ 𝑀1 ≠ 𝑀2 (2)

The two sets of elements {1, 2}, and {1, 2, 4} of Fig. 1 represent two examples of valid tuples respectively denoted

by (1, 2) and (1, 2, 4). However, the set of elements {1, 2, 3} is not a valid tuple because it contains two elements, 2

and 3, which belong to the same model M2.

3.2.2 Similarity Degree of Tuples

A similarity degree (a value between 0 and 1) is assigned to each tuple using the formula 3, which assumes that each

model is represented as a set of elements, and each model element contains a set of sub-elements. Furthermore, it

assumes that the relationship between a sub-element and its parent element is indicated by a role. For example, in the

models illustrated in Fig. 1, the role Class name indicates the relationship between the sub-element 1 and the element

1, while the role Class attribute indicates the relationship between the sub-element 2 and the element 1. A criterion is

defined for each role and a weight is assigned to each criterion. Table 1 gives an example of roles and their corre-

sponding criteria for the UML class diagram. Formula 3 assigns the zero value to each invalid tuple and to each tuple

containing a single element.

 S(𝑡) = ∑ wc × Sc(t)C (3)

S(t) is the function that calculates the similarity degree of the tuple t, wc is the weight of the criterion c, and C is the

set of criteria defined for the elements of the model where ∑ wc = 1C .

Table 1: Example of roles and criteria

Role Criterion Weight

Class name Similarity of class names 0.4

Class attribute Similarity of class attributes 0.6

Sc(t) represents the function that calculates the similarity degree of the tuple t considering only the sub-elements that

correspond to the criterion c. The value of Sc(t) is calculated using the following formula which has been inspired by

the work of Rubin et al. [9]:

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

18

Malaysian Journal of Computer Science, Vol. 34(1), 2021

 𝑆𝑐(𝑡) = (∑ 𝑗2 × 𝑑𝑗2≤𝑗≤𝑚) (𝑛2 × |𝜋(𝑡)|)⁄ (4)

where m is the size (number of elements) of t, n is the number of models, dj is the distribution of sub-elements (the

number of sub-elements that appear in j elements of t), and π (t) represents the set of distinct sub-elements of t. Let

us, as an example, calculate the similarity degree of the tuple (1, 3, 4) of Fig. 1 based on the criteria of Table 1, we

have: m = 3 (we have 3 elements in the tuple which are 1, 3, and 4), n = 3 (there are 3 models). For the criterion

similarity of class attributes, both d2 and d3 are equal to 1, because there is one sub-element (email) that appears twice,

and one sub-element (name) that appears thrice in the tuple, and |π (1, 3, 4)| = |{name, address, email, surname}| =

4. As a result, we have: Ssimilarity_of_class_attributes = 0.36. In the same way, we calculate the similarity degree for the crite-

rion similarity of class names, which is equal to 0.22. Finally, using the criteria weights of Table 1 and the formula 3,

we obtain the similarity degree of the tuple (1, 3, 4), which is equal to 0.31.

3.2.3 Tuple Match

Let M be a set of models and let EM be the set of all its elements defined using the formula 1, a tuple match (or a match

for simplicity) denoted by H is defined on M as any set of tuples that satisfies the following properties [9]:

(a) Each tuple of H contains a subset of EM.

(b) The tuples of H are all valid.

(c) The tuples of H are all disjoint, i.e.,∀(t1, t2) ∈ H2, t1 ∩ t2 = ∅.

(d) H is maximal, i.e., the two previous properties (b) and (c) will be violated, if we add any additional tuple to H.

For example, the two tuples (1, 2) and (3, 4) of Fig. 1 represent a tuple match denoted by ((1, 2), (3, 4)). But the tuple

(1, 4) does not represent a tuple match because we can increase it by the tuple (2) or (3).

A similarity degree is assigned to H using the following formula [9]:

 Sh(𝐻) = ∑ S(t)t∈H (5)

where t represents a tuple, and S is the function that calculates the similarity degree of tuples (see formula 3).

The four possible tuple matches of the models of Fig. 1 and their similarity degrees are presented in Table 2.

Table 2: Example of matches and their similarity degrees

Match number 1 2 3 4

Match ((1,2), (3,4)) ((1,3), (2,4)) ((1,2,4), (3)) ((1,3,4), (2))

Similarity degree 0.62 0.16 0.22 0.31

Each tuple match represents a possibility of merging the set of input models to obtain a single one (each tuple match

corresponds to a resulting model). For example, the four models of Fig. 2 are obtained by merging the three models

of Fig. 1 according to, respectively, the four tuple matches of Table 2 (the match number i in Table 2 corresponds to

the model RMi in Fig. 2).

3.2.4 Quality of Merge

Similarly to [9], we measure the quality of a merge using a weight, which is equal to the similarity degree of the

corresponding tuple match. The higher the weight value of a merge, the more it is considered a good merge. For

example, the weight value of the merge producing the model RM1 is equal to 0.62. It is the best merge because it has

the largest value of weight. Measuring the merge quality using a weight will be useful to evaluate our proposed ap-

proach in Section 6.

4.0 OUR APPROACH

In this section, we present our pairwise approach for merging a collection of similar models. This approach aims

mainly to enhance the resulting quality by considering the order of merging the input models, and the way of matching

the elements of each pair of models. This is achieved by trying as much as possible to combine each model with the

one that is most similar to it, and each element with the element that is most similar to it. The input models are merged

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

19

Malaysian Journal of Computer Science, Vol. 34(1), 2021

using an iterative process, which is repeated until obtaining a single model, and which includes two basic steps: First,

we compare each pair of models using our implementation of the compare and match operators. This allows measuring

the similarity between every two models and identifying the best matching between their elements. In the second step,

we identify the most similar pairs of models and then use our implementation of the merge operator to merge each of

them.

In the rest of this section, before detailing our model merging algorithm (the algorithm that implements our approach),

we first describe how we represent models. Then, we present our implementation of the three operators: compare,

match, and merge, which are used by the model merging algorithm to handle each pair of models.

4.1 Model Representation

We present in this section our representation of models, which has been inspired by the one used in [10] and XMI

(XML Metadata Interchange) principles [30]. We define a model as a tree, where the root corresponds to the model,

and the rest of the nodes correspond to the elements of the model. Each edge in the tree corresponds to a composite

relationship either between the model and one of its first-level elements or between an element and one of its sub-

elements. Each element has a unique identifier, a type, and a role indicating the type of relationship that connects it to

its parent. As an example, Fig. 4 shows a partial representation of the simple UML model presented in Fig. 3.

Fig. 3: A simple UML model

The types and the roles are defined depending on the type of the model. For example, for the UML class diagram, the

set of types includes Class, Attribute, Operation, Parameter, String, Reference, etc. The set of roles includes: Class,

Class name, Class attribute, Class operation, Attribute name, Attribute type, Operation name, Parameter, Parameter

name, Parameter type, etc.

The element whose type has no owned properties, like for example, String or Reference is called atomic. The atomic

elements represent the leaves of the tree, and each of them has its own value. The elements of other types, like for

example, Class or Attribute, are called compound elements. The values of compound elements are obtained based on

the values of their sub-elements.

Thanks to the type Reference, an element can play several roles at the same time. For this, the element of reference

type carries the identifier of the referenced element and thus enabling it to play its role. For example, in Fig. 4, element

182 which is of reference type has a value equal to the identifier of element 1. Since it plays the parameter type role

of element 16, element 1 plays also this role in addition to the class role.

To make it possible to represent the result of the merge, it is necessary for an element to have multiple attributes with

the same role. For example, a class or an attribute in a UML class diagram can have more than one name. For this, we

represent each element attribute as an element with its own identifier.

In order to apply the same treatment to different elements with similar characteristics, and consequently make model

representation more generic, the elements are classified into the following categories:

─ Unordered-compound elements: includes compound elements that are connected to their parents in any order, such

as classes, class attributes, and class operations.

─ Ordered-compound elements: includes compound elements that are connected to their parents according to an

order, such as java method parameters. The elements of this category are represented by empty circles and each of

them contains an attribute indicating its order. For instance, element 16 in Fig. 4 illustrates this category.

2 The element whose identifier is equal to 18

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

20

Malaysian Journal of Computer Science, Vol. 34(1), 2021

─ Same-attribute elements: includes atomic elements that represent the same attribute in the parent element but have

different values, such as different names of a class, an attribute, or an operation in a UML class diagram. The

elements of this category are represented by filled circles (see Fig. 4).

Fig. 4: Example of our model representation

4.2 Implementation of Compare and Match Operators

This section presents how to implement the compare and match operators. These two operators are applied to a pair

of models in order to measure the similarity between them and to identify the best matching between their elements.

A similarity function assigns a similarity degree (a number between 0 and 1) to each pair of models based on a set of

user-defined criteria. The user defines a criterion and its weight (a value between 0 and 1) for each element role. Table

3 presents an example of criteria for a UML class diagram. The similarity function is defined by the following formula:

 𝑆𝑀(𝑀1, 𝑀2) = ∑ 𝑤𝑐 × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝐴𝑛𝑑𝑀𝑎𝑡𝑐ℎ𝑐(𝐸1, 𝐸2𝑐∈𝐶) (6)

where M1 and M2 represent the two models to be compared, C represents the set of criteria, and wc represents the

weight of the criterion c, where ∑ 𝑤𝑐 = 1𝑐∈𝐶 . Ei represents the set of all elements whose role corresponds to the criterion

c in the model Mi. For example, according to Table 3, the similarity between a pair of UML class diagrams is calculated

using only the criterion similarity of classes as follows: SM(M1, M2) = compareAndMatchsimilarity_of_classes (C1, C2) where

C1 and C2 contain respectively all classes of M1 and M2. The next section gives more details about the function com-

pareAndMatchc.

Table 3: Example of criteria for comparing UML class diagrams

Element role Criterion Weight

Class Similarity of classes 1

4.3 Compare and Match Function

The compareAndMatchc function accepts as input two sets of elements (respectively denoted by E1 and E2) having the

same role. It identifies the matched pairs of elements and measures the similarity degree (a value between 0 and 1)

between E1 and E2. For this, we firstly compare the elements of E1 and E2 in a pairwise way. Then, we identify the

matched pairs of elements. A pair of elements is considered to be matched if the first element and the second one are

considered to be the same. In our work, an element cannot be matched to more than one element. If an element does

not match any other element, it is said to be unmatched. Finally, we calculate the similarity degree between E1 and E2.

In the following, we describe how to manipulate the elements of each of the three categories discussed above.

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

21

Malaysian Journal of Computer Science, Vol. 34(1), 2021

4.3.1 Unordered-Compound Elements

In the first step, we compare each pair of elements denoted by (e1, e2), where e1 and e2 belong respectively to E1 and

E2 (E1 and E2 are the two input sets of elements). This is done by using a similarity function denoted Se in a way

similar to the one used above with a pair of models. This function assigns a similarity degree (a number between 0

and 1) to the pair (e1, e2) based on a set of criteria defined for each element role such that a criterion is attributed to

each sub-element role. This set of criteria describes how to calculate the similarity degree between two elements

having the same role. An example of criteria for comparing UML classes is presented in Table 9. The similarity degree

between e1 and e2 is calculated using the following formula:

 𝑆𝑒(𝑒1, 𝑒2) = ∑ 𝑤𝑐 × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝐴𝑛𝑑𝑀𝑎𝑡𝑐ℎ𝑐(𝑆E1, 𝑆E2𝑐∈𝐶) (7)

where C represents the set of criteria defined for the element role of e1 and e2, wc represents the weight of the criterion

c, SEi represents the set of all sub-elements whose role corresponds to the criterion c in the element ei. For example,

according to the criteria presented in Table 9, the similarity degree between two classes is calculated based on three

criteria as follows: Se(e1, e2) = 0.5× compareAndMatchcn(N1, N2) + 0.25 × compareAndMatchca(A1, A2) + 0.25 ×

compareAndMatchco(O1, O2), where cn, ca and co represent respectively the criterion of class names, attributes and

operations, N1 and N2 contain respectively class names of e1 and e2, A1 and A2 contain respectively all attributes of e1

and e2, and finally O1 and O2 contain respectively all operations of e1 and e2.

Once the comparison is completed, we combine two solutions to identify the matched pairs of elements. The first

solution which is a threshold-based solution (e.g., [12] [13]) considers that two compared elements are similar if the

similarity degree between them is greater than a threshold specified for the element role. The problem with this solu-

tion is that an element can be related to several other elements by similarity relations with values above the threshold.

To overcome this problem, we use the second solution that is based on bipartite graph matching (e.g., [26] [31]). The

matched pairs of elements are identified as follows:

1) We firstly replace each similarity degree that is below the threshold by zero. After that, we represent the

comparison result as a bipartite weighted graph, where the two sets of vertices contain respectively the ele-

ments of E1 and those of E2. The edges between the elements are labeled by the similarity degree between

them. The absence of an edge between two elements means that the similarity degree between them is equal

to zero. An example of the comparison result between the elements of two sets respectively denoted by A

and B is shown in Fig. 5. The dashed line connecting A and B is labeled by the similarity degree between

them. All possible matchings produced when comparing A and B, and their similarity degrees are presented

in Table 4.

2) As our approach aims to achieve a better quality result, we try as much as possible to match each element

with the element that is the most similar to it. For this, we identify the best matching, i.e., the matching with

the largest value of similarity degree. For example, matching number 3 in Table 4 is the best matching. We

modeled this problem as the maximum weighted matching in bipartite graphs and resolved it in polynomial

time with the Hungarian method [27].

Finally, we use the following formula to calculate the similarity degree between E1 and E2:

 𝑆(𝐸1, 𝐸2) = ∑ 𝑆𝑒(𝑒𝑖 , 𝑒𝑗)/(|𝐸1| + |𝐸2| − |𝑀𝑏𝑒𝑠𝑡|) (𝑒𝑖,𝑒𝑗)∈𝑀𝑏𝑒𝑠𝑡
 (8)

where Se(ei, ej) returns the similarity degree between the two elements ei and ej according to the formula 7, Mbest and

|Mbest| represent respectively the best matching and the number of pairs it contains.

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

22

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Fig. 5: An example of the comparison result between two sets of elements

Table 4: An example of possible matchings obtained when comparing two sets of elements

Number 1 2 3

Matching
(a1, b1), (a2, b3),

(a3, b2)

(a1, b1), (a2, b4),

(a3, b2)

(a1, b3), (a2, b4),

(a3, b2)

Similarity degree 2.15 2.25 2.35

4.3.2 Ordered-Compound Elements

We manipulate the elements of this category as follows:

─ If the two input set of elements E1 and E2 contain the same number of elements, we compare each element from E1

with the element that has the same order in E2. We calculate the similarity degree between two elements in the

same way as with the first category. The similarity degree is equal to zero if the compared elements do not have

the same order. A threshold is used to decide whether the two elements are similar or not. If all elements of E1 have

similar elements in E2, the set of matched pairs contains each pair denoted (ei, ej) where ei and ej are similar, and

the similarity degree between E1 and E2 is calculated as follows:

 𝑆(𝐸1, 𝐸2) = ∑ 𝑆𝑒(𝑒𝑖, 𝑒𝑗)/|𝐸1| 𝑒𝑖∈𝐸1,𝑒𝑗∈𝐸2
 (9)

─ If E1 and E2 have different number of elements or there is at least one unmatched element, the set of matched pairs

of elements is an empty set and the similarity degree between E1 and E2 is equal to zero.

4.3.3 Same-Attribute Elements

First, we compare each pair of elements denoted (ei, ej), where ei and ej belong respectively to E1 and E2 (E1 and E2

are the two input sets of elements). Since the elements of this category are atomic elements of string type, like for

example class names and attribute names, the similarity degree between ei and ej is directly calculated from their values

using both linguistic and typographic matching. The linguistic matching is based on the N-gram algorithm [32]. This

algorithm calculates the similarity degree between a pair of strings based on counting the number of their identical

substrings of length N. The typographic matching calculates the similarity degree between a pair of strings based on

their linguistic correlations. For this, it uses the WordNet::Similarity package [33]. We obtain the overall similarity

degree by taking the maximum of the results obtained by the typographic and the linguistic matching.

Since the elements of E1 (and respectively those of E2) represent the same element, it is not necessary to find matched

pairs of elements. We need only to calculate the similarity degree between E1 and E2. For this, we use the following

formula: max(Se(ei, ej)), where Se returns the similarity degree between ei and ej.

4.4 Implementation of the Merge Operator

The merge operator uses the result of the compare and match operators to combine a pair of models in a single model.

The elements of the merged model are constructed based on the elements of the two input models from top to bottom,

i.e., we start with the first-level elements such as classes, and then those of the next one such as class names, and

attributes, and so on. We manipulate the elements of the first and second category as follows:

─ A new element denoted e1-2 is created by combining each matched pair of elements denoted by (e1, e2) such that:

 e1-2 has the same type, the same role, and the same order (if e1 and e2 belong to the second category) as e1 and

e2.

 if e1 and e2 are first-level elements, e1-2 becomes a first-level element in the merged model; otherwise, it becomes

a child of the element obtained by combining the parents of e1 and e2.

─ All unmatched elements are directly copied into the merged model. If an unmatched element is a first-level ele-

ment, it becomes a first-level element in the merged model; otherwise, it becomes a child of the element obtained

from its parent.

─ If two elements, respectively denoted by e1 and e2, are combined to obtain e1-2:

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

23

Malaysian Journal of Computer Science, Vol. 34(1), 2021

 All their sub-elements which belong to the third category are directly copied into the merged model without

redundancy, i.e., for each pair of identical (have the same value and the same role) sub-elements we create only

one element. These new elements become children of e1-2.

 Each two sub-elements which have the type Reference and which have the same role are combined if their

referenced elements are combined. The resulting element has a value equal to the identifier of the element ob-

tained by combining the two referenced elements.

4.5 Model Merging Algorithm

Based on the implementation of the three operators presented above, we propose in this section an algorithm (see

Algorithm 1 below) implementing our model merging approach [26]. This algorithm takes as input a set of models

(denoted by M), and merges them progressively in a pairwise way by repeating three basic steps until merging all

input models (until M contains a single model). The algorithm uses three variables denoted by T, P, and m. T is a set

of 3-uplets, where the first and the second term of each 3-uplet represent respectively two models, while the third term

represents the similarity degree between them. P is a set where each element represents a pair of models. Finally m

represents a model.

The steps of the algorithm are the following:

Step 1 (line 7-10): In this step, we first compare each pair of input models using the procedure compareAndMactch()

(line 8) that implements our compare and match operators presented above. This procedure calculates the similarity

degree for each pair of models and identifies the best matching between their elements. The similarity degree and the

best matching are respectively returned by the two following functions: simDeg() and bestMatch(). Then, we arrange

the similarity degree in T (line 9). Finally, we represent the similarity degrees between all pairs of models as a complete

weighted graph in which vertices represent models, and each edge weight represents the similarity degree between a

pair of models. For example, the graph depicted in Fig. 6 represents the comparison result of four models respectively

denoted by M1, M2, M3 and M4.

1: input: M

2: var: T, P, m

3: output: M

4: begin

5: while |M|>1 do

6: T ← ∅

7: for all (Mi, Mj) ϵ M2 do

8: compareAndMatch(Mi, Mj)

9: T ← T ∪ {(Mi, Mj, simDeg(Mi, Mj))}

10: end for

11: P ← maxWeightMatch(T)

12: for all (Mi, Mj) ϵ P do

13: m ← merge(Mi, Mj, bestMatch(Mi, Mj))

14: M ← M\{Mi, Mj}

15: M ← M ∪ {m}

16: end for

17: end while

18: end.

Algorithm 1. Our model merging algorithm

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

24

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Fig. 6: Example of comparison result between a set of models

Step 2 (line 11): Our algorithm aims to combine as much as possible the most similar pairs of models. So, we try in

this step to identify a set of p pairs of models, such that the sum of their similarity degrees is maximal, where p = n/2

and n is the number of models in M (If n is impair, then p = (n-1)/2). We modeled the identification of this set as a

maximum weighted matching problem in a general graph, where vertices represent models and weights represent

similarity degrees between them. The maximum weighted matching problem is to find in an edge-weighted graph the

matching of maximum weight. A matching in a graph G is defined as a subset of the edges of G, such that no two

edges incident to the same vertex. The weight of a matching is the sum of the weights of its edges [34]. For example,

all possible matchings of the graph depicted in Fig. 6 and their weights are presented in Table 5. The first matching

has the maximum weight, and consequently the two pairs (M1, M2) and (M3, M4) are selected to be merged. In order

to solve the maximum weighted matching problem, we use the Edmond's algorithm [28]. Based on Gabow's imple-

mentation of this algorithm [35], the maxWeightMatch() function identifies the set of p pairs of models and arranges

the result in P.

Table 5: An example of possible matchings obtained when comparing a set of models

Matching (M1, M2), (M3, M4) (M1, M3), (M2, M4) (M1, M4), (M2, M3)

Weight 1.35 0.95 1.25

Step 3 (line12-16): In this step, we combine each pair of models (Mi, Mj) from P using our merge operator. This latter

employs the best match calculated by the compareAndMactch() procedure (in line 8), and returned by the bestMatch()

function. Finally, we replace the two models Mi and Mj in M by the model resulting from their merging (line 14 and

15).

For example, the application of our algorithm on the models of Fig. 6 produces after the third step of the first iteration

two models respectively obtained by merging M1 with M2, and M3 with M4. These two models will be merged in the

second iteration to obtain a single model.

5.0 TOOL SUPPORT

We have implemented the approach discussed in this paper as a tool called 3M (Merging Many Models). Fig. 7 shows

how this tool is applied to merge a set of models represented in XMI format. 3M consists of four modules: The first

module allows us to (1) obtain the input models by parsing the XMI files, and (2) to convert them into our model

representation (presented in Section 4.1). The second module allows us to compare each pair of models using our

compare and match operators (described in Section 4.2). The third module allows selecting a set of pairs of models to

be merged according to the algorithm described in Section 4.5. Each selected pair of models is merged by the fourth

module using our merge operator (described in Section 4.4). The result is then used as input to the second module,

and the process continues until obtaining a single model. The results of the second and third modules can be reviewed

by the user.

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

25

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Fig. 7: Tool support overview

As we have previously seen, some configurations have to be done before using our model merging approach. In the

current version of 3M, the user can use a configuration file in order to specify (1) the criteria weights of the element

roles, (2) different thresholds, and (3) the parameter N3 of the N-gram algorithm.

We have implemented our tool in Java based on a set of existing open source implementations, like for example the

ws4j4 (WordNet Similarity for Java) API used to implement the linguistic matching, and the JDOM25 (Java Document

Object Model) API used to parse the XMI files. Our 3M tool consists of about 3400 lines of the code, and has a

graphical interface allowing to visualize models in the form of graphs6. We have published 3M as a jar file with its

documentation at: https://drive.google.com/open?id=1sbr0KMrMV78v-9aDUUoyw07A2MnbOSjP, and as an open-

source project on GitHub at: https://github.com/boubakir/ModelMerging/tree/master/ModelMerging/mmm.

Our tool has been used to perform the empirical evaluation described in the next section.

6.0 EVALUATION AND DISCUSSION

This section is devoted to the evaluation of our approach and the discussion of its advantages and limitations. In order

to assess the feasibility of our approach, we first calculated its complexity, and then empirically evaluated it using a

set of UML class diagrams.

6.1 Complexity

We calculated the time complexity of our model merging algorithm as a function of the number of input models

(denoted by n) and the size (the number of first-level elements, like for instance, classes in UML class diagram) of the

largest model (denoted by k). In each iteration of our model merging algorithm, we first compare n×(n-1)/2 pairs of

models and find the best matching between the elements of each pair of them using the Hungarian method. Therefore,

this latter which has time complexity O(k3) is called n×(n-1)/2 times. Then, we identify the subset of pairs of models

to be merged (pairs of models with the maximum sum of similarity degrees) using a single call of the Edmond's

algorithm which has time complexity7O(m3), where m is the number of models in the current iteration. After each

iteration, the number of models is divided by 2. Finally, after some calculations we obtain the time complexity of our

approach which is polynomial both in n and k, and is bounded by О(log2(n)×(n2×k3+n3)). This complexity is reason-

able considering the fact that taking into account the quality of results when merging a set of model is a hard problem.

This problem is reduced to the NP-hard problem of weighted set packing [36] in the case of simultaneous processing

of all input models [9]. Moreover, the complexity of our approach is better than that of the approach presented in [9],

which is considered as the closest approach to ours, and which has a complexity bounded by О(n4×k4).

3 The N-gram algorithm calculates the similarity degree between two strings based on counting the number of their identical

substrings of length N. In 3M, the default value of N is 3.
4 https://code.google.com/archive/p/ws4j/
5 http://www.jdom.org/
6 The graphical interface is developed based on the GraphStream library which is available at: http://graphstream-project.org/
7 This complexity concerns the implementation proposed by Gabow [35] and used in our work.

https://github.com/boubakir/ModelMerging/
https://code.google.com/archive/p/ws4j/

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

26

Malaysian Journal of Computer Science, Vol. 34(1), 2021

6.2 Evaluation

For simplicity, we divided the evaluation into two parts. The first part is devoted to our model merging algorithm,

while the second part is devoted to evaluate our implementation of the three operators: compare, match, and merge.

The evaluation is performed on an AMD A4-4300M APU 2.35GHz machine with 8GB of RAM.

6.2.1 Evaluation of the Model Merging Algorithm

In this section, we evaluate the ability of our model merging algorithm to produce better quality results. In order to do

that, we applied it to four case studies and compared the results with three other pairwise model merging algorithms

respectively denoted by rand, ascOrd, and descOrd. Each of these algorithms manipulates a pair of models in the

same way as our algorithm, i.e., they use the same implementation of the three operators, compare, match and merge

described in section 4. They only differ from our algorithm in the order of combining the set of input models. The first

algorithm (rand) merges input models in a random order, i.e., it merges in the first step two randomly selected models,

then merges the result with another randomly selected model, and so on, until merging all models. The second algo-

rithm (ascOrd), merges the input models after arranging them in ascending order by their size (number of elements).

Finally, the third algorithm (discOrd) performs the merge after arranging the input models in descending order. The

case studies used are shown in Table 6. The first and the second one (Hospital-v1 and Hospital-v2) are two different

versions of Hospital system. While the third and the fourth one (Warehouse-v1 and Warehouse-v2) are two different

versions of Warehouse system. Each case study consists of a set of different variants of the same system. The first

column of the table gives the number of variants (number of models) of each case study. The second column gives

the number of elements (number of classes) in all models. The elements of the first version of each system are very

varied in terms of their size relatively to those of the second version.

Table 6: The case studies of the first part of the evaluation

 Number of models Number of classes

Hospital-v1 8 221

Hospital-v2 8 82

Warehouse-v1 16 388

Warehouse-v2 16 159

The evaluation is achieved as follows: First, we applied each algorithm on each case study, and then we measured the

weight of the resulting models and the approximate execution time. Finally, we compared the results. An algorithm is

considered to be good if it produces a model with a height value of weight. Similarly to [9], we performed the com-

parison by calculating for each case study, the percentage of the improvement (or degradation) that our algorithm

provided compared by the other algorithms. The results are summarized in Table 7, where the first three columns

present respectively the results obtained by the algorithms rand, ascOrd, and desOrd. The result obtained by our

algorithm is presented in the fourth column. Finally, the last column presents the improvement (or degradation) per-

centage obtained by our algorithm over the best of the three other algorithms. The minus sign (-) precedes the per-

centage value in the case of degradation.

As illustrated in Table 7. For the first case (Hospital-v1), our algorithm outperforms both rand and ascOrd algorithms.

It improves their results by respectively 1.43%, and 10.10%. However, it does not outperform desOrd, and presents a

degradation of 3.77%. For the second (Hospital-v2), the third (Warehouse-v1), and the fourth (Warehouse-v2) case

studies, our algorithm outperforms all other ones. More precisely, for the second case, it improves the results produced

by rand, ascOrd, and desOrd, respectively, by 10.98%, 10.22%, and 1.34%. For the third case, it improves the results

respectively, by 2.10%, 11.56%, and 0.67%. And finally, for the fourth case, it improves the results respectively, by

5.3 %, 16.28%, and 10.39%. For all case studies, our algorithm outperforms all other algorithms except the first case

where it is surpassed by desOrd. Comparing our algorithm with this latter algorithm for all case studies, we found that

it presents a degradation of 3.77% and three improvements: 1.34, 0.67, and 10.39.

Table 7: The results of the of the first part of the evaluation

 rand ascOrd desOrd Our algorithm Impro/Degrad

Hospital-v1
Weight 5.383 4.959 5.666 5.460 -3.77%

Time 5s 5s 5s 21s

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

27

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Hospital-v2
Weight 1.293 1.302 1.416 1.435 1.34%

Time <1s <1s <1s 2s

Warehouse-v1
Weight 1.333 1.220 1.352 1.361 0.67%

Time 8s 8s 8s 49s

Warehouse-v2
Weight 0.434 0.393 0.414 0.457 5.3%

Time 1s 1s 1s 6s

6.2.2 Evaluation of the Compare, Match and Merge Operators

This part of the evaluation aims principally to assess the ability of our approach to produce accurate results when

manipulating a pair of models. More precisely, it assesses whether the elements of a pair of models are correctly

matched. For this, we used two metrics: precision and recall that measure respectively quality and coverage. Precision

is the ratio of correctly identified matches to the total number of identified matches. Recall is the ratio of the correctly

identified matches to the total number of all correct matches. A matching technique is considered to be effective if it

produces high precision and high recall. However, these two metrics are known to be inversely related [12]. High

precision means that the number of incorrect matches is not high, and consequently, the user spends less effort to

remove them. High recall means that the number of missing correct matches is not high, and consequently, the user

spends less effort to find them.

The evaluation is performed by applying our implementation of the three operators to a set of model variants generated

from three software product lines. These three families of systems are respectively called NotePad, GameOfLife and

GPL. They are implemented in Java and are obtained from the FeatureIDE framework8. The evaluation is carried out

as follows: First, we generated the large product variant from each family using the FeatureIDE framework. As result

we obtained three Java applications. Then, we used reverse engineering technique to obtain three models from the

Java source code. Some characteristics of these models are presented in Table 8. After that, for each of these models,

we performed the following steps: (1) randomly generating two variants from the selected model, (2) applying our

approach to merge these two variants, (3) calculating precision and recall. These steps are performed with different

values of the threshold ranging from 0 to 1, and repeated fifty times for each of these values. Finally, we took the

average of precision and recall values for each model and for each value of the threshold. The results are summarized

in Fig. 8

To generate a variant of a model of Table 8, we automatically created a copy of it with two modifications. The first

modification consists of randomly deleting up to 50% of the elements. The second modification consists of randomly

renaming up to 50% of element names (class names, attribute names, and operation names). The renaming process

consists of randomly changing until 50% of the characters of a string. During this evaluation, we used the criteria

presented in Table 9. Furthermore, different roles take the same value of the threshold. For example, if the threshold

is equal to 0.5, all the flowing roles have a threshold equal to 0.5: class, class attribute, class operation, parameter,

class name, attribute name, attribute type, operation name, operation type, parameter name, and parameter type.

Table 8: The case studies of the second part of the evaluation

Number of

classes

Number of

Attributes

Number of

operations

Number of

 all elements

NotePad 9 79 55 498

GPL 14 37 143 859

GameOfLife 12 37 57 474

As shown in Fig. 8, for each of the three systems, our approach produces high precision. It is equal to 68% in the

worse case. When the threshold increases, precision increases until reaching 100%, but the recall decrease considera-

bly until reaching 0%. For thresholds below or equal to 0.5, recall is more than 60%.

In addition to the accuracy test, we assessed the ability of our approach to provide results in considerable time. For

this, we applied it to pairs of models containing a different number of classes ranging from 10 to 100 classes. For each

number of classes, we proceeded as follows: First, we randomly generated two models from the GPL system by

8 https://featureide.github.io

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

28

Malaysian Journal of Computer Science, Vol. 34(1), 2021

duplicating the elements. Then, we executed our approach to this pair of models and calculated the execution time.

We repeated the previous steps ten times, and finally, we took the average of the execution time. Table 10 shows the

number of classes and the average number of all elements of the models used. The result is presented in Fig. 9. As we

can see, the execution time increases considerably as the size of the models increases. This is mainly due to the use of

the Hungarian method at different levels to improve the quality of matching.

Table 9: Example of criteria for UML classes

Element

Role
Sub-element Role Criterion Weight

Class

Class name Similarity of class names 0.5

Class attribute Similarity of attributes 0.25

Class operation Similarity of operations 0.25

Class at-

tribute

Attribute name Similarity of attribute names 0.5

Attribute type Similarity of attribute types 0.5

Class op-

eration

Operation name Similarity of operation names 0.5

Operation type Similarity of operation types 0.25

Parameter Similarity of parameters 0.25

Parameter
Parameter name Similarity of parameter names 0.5

Parameter type Similarity of parameter types 0.5

Fig. 8: Results of the precision and recall test

Table 10: Details about the models used in the execution time test

Number of classes 10 20 30 40 50 60 70 80 90 100

Average number of

all elements 5
0

4

8
6

0

1
5

1
2

1
8

3
5

2
4

6
0

2
8

7
3

3
2

4
5

3
5

8
1

3
9

7
0

4
6

2
9

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

29

Malaysian Journal of Computer Science, Vol. 34(1), 2021

Fig. 9: Results of the execution time test

6.3 Discussion

We summarize in this section the main advantages and limitations of our approach.

6.3.1 Advantages

Our approach has the following advantages:

─ It allows the user to merge a set of similar models in a fully automatic way. It requires only (1) the set of input

models which are directly provided by the user or reverse engineered from source code, and (2) to set up some

parameters.

─ It uses a generic representation of models which allows it to be easily extendable to support a wide variety of

models. Furthermore, it is customizable as it gives the user the possibility to set up a number of parameters, like

for example the set of criteria and thresholds used in the model comparison step.

─ The fact that it proposes to merge models in an incremental way provides the advantage of giving the user the

possibility to intervene in order to review and, if necessary, adjust the result.

─ It can be used to complement existing approaches. Users who already have experience with other pairwise model

merging approaches can continue to use them to merge pairs of models and use our approach to enhance the quality

of results by considering the order of merging.

6.3.2 Limitations

Our approach has some limitations:

─ In order to calculate the similarity degrees of tuples and consequently to measure the result quality of a merge, we

used a particular weight function inspired by [9] (the weight function presented in Section 3). Therefore, the result

of our experimentation might not be generalized to other weight calculations.

─ The current implementation of our approach has some limitations at the comparison level. Indeed, we did not

consider the elements which are of reference types during the calculation of similarity degrees. This can influence

the results especially in the case of models in which the elements of this type are very frequent, like for example,

Statechart models.

─ Our approach requires to apply several times the Hungarian method and the Edmond's algorithm that have polyno-

mial complexity. This negatively influences the performance of the approach in term of execution time.

7.0 RELATED WORK

Several approaches have been proposed in the literature to address the problem of model merging. Most of these

approaches lack generality or can be applied only to specific types of models. Some of them deal only with a sub-

problem of model merging like, for example, model comparison. Furthermore, almost all of them focus only on merg-

ing two input models without proposing solutions for processing several (more than two) models.

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

30

Malaysian Journal of Computer Science, Vol. 34(1), 2021

The authors in [37] and [38] present two complete surveys on model comparison. Antoniol et al. address in [39] the

problem of detecting differences between the releases of an object-oriented system. They propose to model the prob-

lem using a bipartite graph, where vertices represent classes of the two releases, and edges are weighted by the simi-

larity degrees between classes. Kelter et al. address in [13] the problem of comparison between UML diagrams rep-

resented using XMI format. The authors in [14] focus also on UML diagrams. They propose UMLDiff which is an

algorithm to detect differences between versions of UML class diagrams. Kpodjedo et al. propose in [15] an approach

called MADMatch for solving the problem of detecting many-to-many matches in diagrams. They model the problem

as a graph matching problem and solve it using tabu search. Nejati et al. present in [2] an approach for merging variant

feature specifications represented using Statechart models. This approach is an extension of a previous approach pro-

posed by the same authors in [12]. This latter allows merging hierarchical Statecharts models based on a heuristic

operator for finding matches between models. A very simple approach for merging a pair of diagrams from the same

model, and resolving conflicts is presented in [4]. The conflict problem is also considered by Dam et al. in [3]. They

propose an approach for detecting and avoiding both syntactic and semantic consistencies that occur when merging

versions of the same model. This approach is applied to model versions and their common ancestor using three-way

merging.

The success of EMF has motivated the development of a number of approaches aiming at merging EMF models. For

example, EMF Compare [40] is a meta-model independent approach for comparing versions of EMF models. It allows

to compare two versions of a model which may be an instance of an arbitrary Ecore model. EMF Compare uses a

variety of statistics and metrics in order to perform the comparison and represent the result as a model. EMF

Diff/Merge [41] is a tool for merging EMF models based on user-defined policies. It ensures model consistency via

predefined consistency rules. Westfechtel presents in [16] a formal approach for merging EMF models allowing both

two- and three-way merging of two alternative versions. To ensure the consistency of the resulting model, the merge

algorithm uses a set of rules allowing to detect and to resolve merge conflicts. The problem of merging EMF models

is also addressed by the authors in [18]. In particular, they tackle a sub-problem of three-way model merging, which

is merging of ordered collections. To perform model merging, they first propose to (1) represent each version of a

collection as a linearly ordered graph. Then, (2) use a set of formula to combine the graphs that represent the collec-

tions. In order to create the merged collection, they propose to perform a generalized topological sort on the merged

collection graph.

Contrary to our approach which aims to merge a set of models, the previous approaches are characterized by being

limited to processing two models only. Some other approaches can be applied to a set of models. For example, the

MoVaC approach [42] allows comparing a collection of model variants and identifying commonality and variability

between them. This approach is designed to be generic and applicable to any EMF-based models. The main idea

behind it is to divide each model variant into a set of atomic model elements according to MOF specification [43],

then reuse the algorithm presented in [44] to identify commonality and variability. MoVaC allows to graphically

represent the comparison result in the form of features, where each feature consists of a set of atomic model elements.

Unlike our approach, MoVaC does not take into account the quality of merge. Mansoor et al. [45] formalize the model

merging problem as a multi-objective problem based on NSGA-II algorithm [46], and propose an operation-based

approach for model merging which considers the importance of operations in the merging process. This approach

takes as input a set of model versions and their common ancestor, the list of applied operations and their importance

scores, and produces as result a set of merging solutions. It aims to find the best trade of between minimizing the

number of disabled operations and maximizing the number of important enabled ones. This approach is different from

ours, as it is an operation-based approach, contrary to our approach which is a state-based approach. Moreover, as we

have seen above, it takes as input not only a set of model variants as our approach does, but also their common

ancestor, the list of applied operations and their importance scores.

Rubin and Chechik present in [9] an approach for merging together a set of (two or more) input models. The authors

focus on the matching problem between the elements of the input models. They formulate this problem as a weighted

set packing problem, and solve it by proposing a heuristic algorithm which simultaneously treats all input models.

This work is similar to ours as it addresses the problem of merging not only a pair of models but many models, and

takes into account the quality of merge. However, it performs the merging of the input models in completely different

way from ours. In our work, input models are not simultaneously considered, but they are merged in a progressive

and pairwise way, by tacking in to account the order of merging in order to enhance the quality of the result.

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

31

Malaysian Journal of Computer Science, Vol. 34(1), 2021

8.0 CONCLUSION AND FUTURE WORK

Model merging is an important and challenging task in Model-Driven Engineering. It has attracted a lot of attention

in recent years. However, almost all existing approaches focus only on merging two model variants and do not con-

sider the result quality when merging many (more than two) models.

This paper proposes a model merging approach that aims to obtain better quality results when merging a set of models

in a pairwise way. Its main idea is to consider the order of merging the input models, and the way of matching the

elements of each pair of models. The set of input models are merged using an iterative process, which is repeated until

obtaining only one model. This process includes two basic steps: In the first step, we compare every pair of models in

order to calculate the similarity degree between each two models and identify the best matching between their ele-

ments. We modeled the best matching identification problem as the maximum weighted matching in bipartite graphs

and solved it in polynomial time using the Hungarian method. In the second step, we identify the most similar pairs

of models and merge each of them. The identification of the most similar pairs of models is modeled as a maximum

weighted matching problem in a general graph and solved in polynomial time using an implementation of the Ed-

mond's algorithm. In order to make model comparison and matching more effective, we consider both typographic

and linguistic matching.

Our approach is designed to be easily extendable to support a wide variety of models. Furthermore, our approach is

customizable as it gives the user the possibility to set up several parameters like, for example, a set of criteria and

thresholds.

We have implemented and evaluated our approach by applying it to a set of UML models, and the experiments show

that it is promising. We have also published the tool implementing it as an open-source project on GitHub platform to

allow others to use and extend it.

Our main direction for future work is to provide a generic solution for model merging. Therefore, we are interested in

applying our approach to other types of models than UML models, and extending it to support any kind of EMF-based

model. We plan also to provide a more complete implementation of our approach in the form of an Eclipse plugin.

REFERENCES

[1] M. Brambilla et a1., Model-Driven Software Engineering in Practice. Synthesis Lectures on Software Engineer-

ing, Morgan & Claypool Publishers, 2012

[2] S. Nejati et al., “Matching and Merging of Variant Feature Specifications”. IEEE Transactions on Software

Engineering, vol. 38, 2012, pp. 1355–1375

[3] H. K. Dam et al., “Consistent Merging of Model Versions”. Journal of Systems and Software, vol. 112, 2016,

pp. 137–155

[4] B. S. Thakare et al., “New Approach for Model Merging and Transformation”, in International Conference on

Computer Communication and Informatics (ICCCI), Coimbatore, India, 2012

[5] H. Chong et al., “Composite-Based Conflict Resolution in Merging Versions of UML Models”, in 17th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD), Shanghai, China, 2016

[6] M. Sabetzadeh et al., “A Relationship-Driven Framework for Model Merging”, in MISE '07: Proceedings of the

International Workshop on Modeling in Software Engineering, Minneapolis, MN, USA, 2007

[7] S. Melnik et al., Concepts And Algorithms. Springer, 2004

[8] K. Pohl et al., Software Product Line Engineering: Foundations, Principles and Techniques. Springer, New York,

2005

[9] J. Rubin et al., “N-Way Model Merging”, in ESEC/FSE, ACM, 2013, pp. 301–311

[10] J. Rubin et al., “Combining Related Products into Product Lines”, in FASE’12, Springer, 2012, pp. 285–300

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://www.sciencedirect.com/science/article/pii/S016412121500134X

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

32

Malaysian Journal of Computer Science, Vol. 34(1), 2021

[11] J. Rubin et al., “Quality of Merge-Refactorings for Product Lines”, in FASE'13 Proceedings of the 16th

international conference on Fundamental Approaches to Software Engineering, Springer, Heidelberg, 2013, pp.

83–98

[12] S. Nejati et al “Matching and Merging of Statecharts Specifications”, in ICSE 2007, IEEE, 2007, pp. 54–64

[13] U. Kelter et al., “A Generic Difference Algorithm for UML Models”, in Software Engineering, Vol. 64, 2005,

pp. 105–116

[14] Z. Xing et al., “UMLDiff: An Algorithm for Object-Oriented Design Differencing”, in ASE, ACM, 2005, pp.

54–65

[15] S. Kpodjedo et al., “MADMatch: Many-to-Many Approximate Diagram Matching for Design Compari-

son”. IEEE Transactions on Software Engineering, Vol. 39, 2013, pp.1090–1111

[16] B. Westfechtel, “Merging of EMF Models”, in Software & Systems Modeling (SoSyM), Vol. 13, 2014, pp. 757–

788

[17] B. Westfechtel, “A Formal Approach to Three-Way Merging of EMF Models”, in IWMCP '10 Proceedings of

the 1st International Workshop on Model Comparison in Practice, Malaga, Spain, 2010, pp. 31–41

[18] F. Schwägerl et al., “A Graph-Based Algorithm for Three-Way Merging of Ordered Collections in EMF

Models”. Science of Computer Programming journal, Vol. 113, 2015, pp. 51–81

[19] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

[20] K. Altmanninger et al., “A Survey on Model Versioning Approaches”. International Journal of Web Information

Systems, Vol. 5, 2009, pp. 271–304

[21] P. Brosch et al., “An Introduction to Model Versioning”, in proceedings of the 12th International School on

Formal Methods for the Design of Computer, Communication, and Software Systems (SFM), 2012

[22] T. Mens, “A State-of-the-Art Survey on Software Merging”. IEEE Transactions on Software Engineering, Vol.

28, 2002, pp. 449–462

[23] X. Zhang et al., “Model Comparison to Synthesize a Model-Driven Software Product Line”, in SPLC, IEEE,

2011, pp. 90–99

[24] J. Martinez et al., “Bottom-Up Adoption of Software Product Lines - A Generic and Extensible Approach”, in

SPLC, ACM, 2015, pp. 101–110

[25] A. Shatnawi et al., “Recovering Software Product Line Architecture of a Family of Object-Oriented Product

Variants”. Journal of Systems and Software, Vol. 131, 2017, pp. 325–346

[26] M. Boubakir et al., “A Pairwise Approach for Model Merging”, in proceedings of MISC’16, Springer, 2016, pp.

327–340

[27] H. W. Kuhn, “The Hungarian Method for the Assignment Problem”. Naval Research Logistics Quarterly, Vol.

2, 1955, pp.83–97

[28] J. Edmonds “Maximum Matching and a Polyhedron with 0,1-Vertices”. Journal of Research National Bureau of

Standards. Section B 69, 1965, pp. 125–130

[29] C. Ignat et al., “Operation-Based Versus State-Based Merging in Asynchronous Graphical Collaborative

Editing”, in Workshop on Collaborative Editing, 2004

[30] OMG, http://www.omg.org/spec/XMI/2.1.1/

[31] A. Duley et al., “A Program Differencing Algorithm for Verilog HDL”, in proceedings of ASE’10, 2010, pp.

477–486

[32] C. Manning et al., Foundations of Statistical Natural Language Processing. MIT Press, 1999

[33] T. Pedersen et al., “WordNet:: Similarity - Measuring the Relatedness of Concepts”, in AAAI, 2004, pp. 1024–

1025

[34] D. E. Drake et al., “A Linear-Time Approximation Algorithm for Weighted Matchings in Graphs”. ACM

Transactions on Algorithms (TALG), Vol. 1, 2005, pp. 107–122

[35] H. N. Gabow, “An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs”.

Journal of the ACM (JACM), Vol. 23, 1976, pp. 221–234

https://dl.acm.org/author_page.cfm?id=81351597385&coll=DL&dl=ACM&trk=0&cfid=1024060419&cftoken=90328698
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/XMI/2.1.1/
http://dl.acm.org.www.sndl1.arn.dz/citation.cfm?id=321942&CFID=749068065&CFTOKEN=46154555

An Approach and a Tool for Merging a Set of Models in Pairwise Way. pp., 13-33

33

Malaysian Journal of Computer Science, Vol. 34(1), 2021

[36] E. M. Arkin et al., “On Local Search for Weighted k-Set Packing”. Mathematics of Operations Research, Vol.

23, no. 3, 1998, pp. 640–648

[37] M. Stephan et al., “A Survey of Model Comparison Approaches and Applications”, in 1st International

Conference on Model-Driven Engineering and Software Development, INSTICC Press, 2013, pp. 265–277

[38] D. D. Kolovos et al., “Different Models for Model Matching: An Analysis of Approaches to Aupport Model

Differencing” in proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software Models,

CVSM, IEEE, 2009, pp. 1–6

 [39] G. Antoniol et al., “Maintaining Traceability Links during Object-Oriented Software Evolution”, in Software-

Practice and Experience, Vol. 31, 2001, pp. 331–355

[40] C. Brun et al., “Model Differences in the Dclipse Modeling Framework”. UPGRADE, The European Journal

for the Informatics Professional, Vol. 9, 2008, pp. 29–34

[41] EMF Diff/Merge: a Tool for Merging Models, https://wiki.eclipse.org/EMF_DiffMerge

[42] J. Martinez et al., “Identifying and Visualizing Commonality and Variability in Model Variants”, in proceedings

of ECMFA, vol. 8569, ACM, 2014, pp. 117–131

[43] OMG: Meta Object Facility (MOF) Core Specification, http://www.omg.org/spec/MOF/2.0/

[44] T. Ziadi et al., “Feature Identification from the Source Code of Product Variants”. In: CSMR, 2012, pp. 417–

422

[45] U. Mansoor et al., “MOMM: Multi-Objective Model Merging”. Journal of Systems and Software, Vol. 103,

2015, pp. 423–439

[46] K. Deb et al., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”. IEEE Transactions on

Evolutionary Computation, Vol. 6, 2002, pp. 182–197

https://wiki.eclipse.org/EMF_DiffMerge

